GSOC
MENTORING

Published : 2012-04-24
License : None

INTRODUCTION

1. ABOUT THIS MANUAL
2. WHAT IS GOOGLE SUMMER OF CODE?
3. WHY GSOC MATTERS

1. ABOUT THIS MANUAL

This manual was written during a Book Sprint sponsored by Google and facilitated by FLOSS
Manuals. The manual was written in two days but the maintenance of the manual is an ongoing
process to which you may wish to contribute. A second sprint occurred in 2010 to update the
manual (adding the Org Admin section) and write the Students Guide ("Flipping Bits not Burgers").

Since the manual may be updated at any time, you may wish to periodically check here for
updated versions:
http://www.flossmanuals.net

You can also find the electronic book (for use with Android ebook readers software, Sony Reader
etc) here:
http://objavi.flossmanuals.net/books

HOW TO CONTRIBUTE TO THIS MANUAL

If you would like to contribute then follow these steps:

1. Register On the front page (http://www.booki.cc) by clicking on Sign in / Create Account
at the top of the screen.

2. Under Create Account add your desired details

3. Click Create Account.

4. Booki will generate the account and display a Your account has been created message
before redirecting you to your Profile Page. Your user page is also accessed through My
Profile on the menu.

5. Contribute text by visiting http://booki.flossmanuals.net/GSoCMentoring/_edit. Press 'edit'
and start work on a chapter.

6. Mailing List
For discussing all things about FLOSS Manuals join our mailing list:_

http://lists.flossmanuals.net/listinfo.cgi/discuss-flossmanuals.net

For more information on using FLOSS Manuals you may also wish to read our manual:

http://en.flossmanuals.net/FLOSSManuals
ABOUT THE AUTHORS

This manual exists as a dynamic document on flossmanuals.net, and over time will have an ever-
increasing pool of authors and contributors.

Except were noted the following individuals were part of both the 2009 and 2010 GSoCBook
Sprint. We thank them for their tireless efforts to create this first-of-its-kind volume.

Alexander Pico

Alex works at the Gladstone Institutes in San Francisco as a Bioinformatics Software Engineer.
He holds a PhD in Molecular Neurobiology and Biophysics and has over 10 years of bioinformatics
experience in data mining, analysis, visualization and integration. Over the past 5 years he has
led the GenMAPP pathway analysis project, managing software development and coordinating
research projects involving wet lab biologists and senior programmers. Alex is a member of the
Cytoscape core development team, a creator of SNPLogic.org, and a founder of
WikiPathways.org. He has also administered GenMAPP's participation in the Google Summer of
Code program for the last 4 consecutive years.

http://nextnucleus.or

4

http://www.flossmanuals.net
http://objavi.flossmanuals.net/books/
_edit
http://lists.flossmanuals.net/listinfo.cgi/discuss-flossmanuals.net
http://en.flossmanuals.net/FLOSSManuals
http://nextnucleus.org

Bart Massey

Bart Massey graduated Reed College in 1987 and spent two years as a software engineer at
Tektronix, Inc. He received his this MSc in Computer Science from University of Oregon in 1992
and his PhD in 1999 for work with the Computational Intelligence Research Laboratory there.
Since then, Bart has taught at Portland State University, where he is currently an Associate
Professor, and for the Oregon Master of Software Engineering program. Bart is Secretary of the
X.Org Foundation Board; his current research interests include open tech, software engineering,
desktop interfaces and state space search.

http://www.cs.pdx.edu/~bart

Jonathan "Duke" Leto

Jonathan is an open source hacker who currently focuses on the Parrot Virtual Machine and
Rakudo, Perl 6 on Parrot, as well as being the maintainer of many CPAN modules, many with a
focus on scientifc computing and cryptography. He first was a mentor for Math::GSL in GSoC
2008 and then became organization administrator for The Perl Foundation's involvement in GSoC
2009 as well as being the mentor for Math::Primality. Jonathan received a masters in
mathematics from University of Central Florida and has published several papers in the field of
differential equations. Currently he works in the Bioinformatics sector and consults for Git
migrations and training. He enjoys discovering wheels within wheels.

http://leto.net

Jennifer Redman

Jennifer is the founder and CEO of Buunabet, a technical consulting company that helps
businesses and organizations integrate open source software into their computing infrastructure.
Jennifer is currently the Associate Systers-Keeper for Systers, the oldest International online
community of technical women. One of the founders of the Systers open source project, she
participated in GSoC 2009 and 2010 as an org admin and mentor. Previous careers include
canvassing for Greenpeace and as a staff member on a national (and successful) presidential
campaign. She also likes to travel and reads a lot of books.

http://buunabet.com

Selena Deckelmann

Selena is a major contributor to the PostgreSQL project. She founded Open Source Bridge
conference, a conference for open source citizens. She helps run PDXPUG, a PostgreSQL Users
Group, and is part of Code n Splode, a programming group whose goal is to get more women
involved in open source. In her spare time, she likes to mix drinks for her local user groups, and
fetch eggs from her chickens.

http://chesnok.com/daily

Carol Smith (2010)

Carol works for the Open Source Programs Office at Google administering the Google Summer of
Code program. She has worked at Google for 5 years in a variety of positions. She has a degree
in photojournalism from California State University, Northridge and is an avid cyclist.
http://www.fossygirl.com

Malveeka Tewari (2010)

Malveeka is currently a graduate student in the CS dept at UC, San Diego. She participated in
GSoC 2009 as a student for Systers and again as a mentor for Systers in GSoC 2010. She is
also a member of Systers and WIC (Women in Computing) group at UC, San Diego and has helped
in organizing events in her school for engaging and encouraging women in computing. Her favorite
past times including hiking, cooking and reading books. She is a big fan of P.G. Wodehouse and
Agatha Christie.

http://cseweb.ucsd.edu/~mtewari

http://www.cs.pdx.edu/~bart
http://leto.net
http://buunabet.com
http://chesnok.com/daily
http://chesnok.com/daily
http://cseweb.ucsd.edu/~mtewari/

2009 PARTICPANTS

Olly Betts

Olly is the lead developer of the Xapian search engine library. He's been working on Xapian for 10
years, and makes a living as a freelance developer and consultant on Xapian-related projects. In
GSoC, he's represented SWIG as a mentor in 2008, and a mentor and co-admin in 2009. Olly is
originally from the UK where he studied mathematics and then computer science at Cambridge
University, but now lives near Wellington in New Zealand. He once broke a toe falling off a cliff in
Majorca.

http://survex.com/~olly/

Leslie Hawthorn

Leslie held various roles at Google before joining the Open Source Programs Office in March
2006. Her first project after joining the team was spinning up Google Summer of Code 2006 and
she has managed the program ever since. She also conceived, launched and managed the Google
Highly Open Participation Contest, an initiative inspired by GSoC that helps pre-university
students get involved with all aspects of open source development. Mentoring in open source
communities is one of her personal passions, along with humanitarian uses for open source
software. She loves to cook, read and can occasionally be found pining for illuminated
manuscripts. She also likes to think of herself as a superb filker.
http://www.hawthornlandings.org

FACILITATION (2009 & 2010)

The Book Sprints were facilitated by :

Adam Hyde

Adam is the founder of FLOSS Manuals and project manager for Booki. FLOSS Manuals is a
community of 1500 (at the time of writing) volunteers that create quality free documentation
about free software. FLOSS Manuals is pioneering the Book Sprint methodology that enables the
development of well written manuals on free software in 2-5 days. Adam has facilitated over 15
Book Sprints on Free Software including Inkscape, OLPC, Sugar, CiviCRM, Firefox, Introduction to
the Command Line, Digital Foundations (conversion to free software examples), Ogg Theora, How
to Bypass Internet Censorship, Open Translation Tools, PureData, Video Subtitling and now the
Google Summer of Code Mentors Guide. Adam is also the Project Manager for the development
of 'Booki' - the free software Collaborative Authoring Platform (see below).
adam@flossmanuals.net

http://survex.com/~olly/
http://www.hawthornlandings.org/

THE PLATFORM

This book was written using Booki and output to templated HTML, book formatted PDF, and
epub by the same platform. Please consider helping us develop this wonderful collaborative
authoring and book production software. It is GPL and more info available at http://booki-
dev.flossmanuals.net. You can also see booki at http://www.booki.cc

http://booki-dev.flossmanuals.net

2. WHAT IS GOOGLE SUMMER OF CODE?

Google Summer of Code (GSoC) is a program that matches mentoring organizations with college
and university student developers who are paid to write open source code. Each year, Google
works with many open source, free software and technology-related groups to identify and fund
proposals for student open source projects.

GSoC pairs accepted student applicants with mentors from participating projects. Accepted
students gain exposure to real-world software development and an opportunity for employment
in areas related to their academic pursuits. In turn, participating organizations are able to identify
and bring in new developers more easily. Best of all, more source code is created and released
for the use and benefit of all; all code produced as part of the program is released under an open
source license.

This program has brought together thousands of students and mentors from over 100 countries
worldwide. At the time of writing, over 200 open source projects, from areas as diverse as
operating systems and community services, have participated as mentoring organizations for the
program. Successful students have widely reported that their participation in GSoC made them
more attractive to potential employers and that the program has helped greatly when
embarking on their technical careers.

GOALS OF THE PROGRAM

The program has several goals:

Get more open source code written and released for the benefit of all.

Inspire young developers to begin participating in open source development.

Help open source projects identify and bring in new developers.

Provide students the opportunity to do work related to their academic pursuits during the
summer: "flip bits, not burgers."

o Give students more exposure to real-world software development (for example,
distributed development and version control, software licensing issues, and mailing list
etiquette).

A BRIEF HISTORY OF GOOGLE SUMMER OF CODE

Google Summer of Code began in 2005 as a complex experiment with a simple goal: helping
students find work related to their academic pursuits during their school holidays. In GSoC's first
year, 40 projects and 400 students participated. In 2010, the sixth Google Summer of Code
wrapped up to the best results yet - more than 89% of the 1,026 student participants in the
program successfully completed their projects. Best of all, most of the organizations participating
over the past six years reported that the program helped them find new community members
and active committers.

See the appendix for a more extensive history of the program.

PARTICIPANT ROLES

There are four roles in the Google Summer of Code program:

Program Administrator: Program administrators are employees of Google's Open Source
Programs Office who run the program. These folks do a variety of tasks: select the participating
open source projects each year, create and analyze the program evaluations, administer the
program mailing lists, ensure that participants are paid, and send out the all-important program
t-shirt. Program administrators do not select which student proposals are accepted into Google
Summer of Code.

More broadly, program administrators provide useful advice to both new and seasoned
participants in a variety of areas, relying on their experience with the program and mentoring
process. Not sure how to handle a disappearing student? Don't know which mailing list has the
latest information on payments? Wondering how to best improve your organization's application
for the program? Find a program administrator and ask away!

Organization Administrator: Org admins are the "cat herders" for GSoC open source projects.
These people submit the organization's application to participate in the program to Google,
ensure that mentors fill out evaluations in a timely fashion, and generally organize their project's
participation in GSoC. The org admin acts as Google's go-to person if any issues arise. There are
also some trivial administrative tasks in GSoC's online system that can only be completed by
organization administrators, all of which are enumerated in the system documentation. Some org
admins also mentor students during GSoC, and that's perfectly fine; it is just highly
recommended that folks know they have enough time to execute both roles simultaneously.

Org admins are the final authority about matters such as which student projects will be accepted
and who will mentor whom. On the social side, if a mentor and student have difficulties
communicating or making progress, an org admin will often step in as a neutral party to help the
two work together more effectively. Org admins also help track down disappearing participants,
whether mentors or students.

Mentor: Mentors are people from the community who volunteer to work with a student.
Mentors provide guidance such as pointers to useful documentation, code reviews, etc. In
addition to providing students with feedback and pointers, a mentor acts as an ambassador to
help student contributors integrate into their project's community. Some organizations choose to
assign more than one mentor to each of their students. Many members of the community
provide guidance to their project's GSoC students without mentoring in an "official" capacity,
much as they would answer anyone's questions on the project's mailing list or IRC channel.

Student: A student participant in GSoC is typically a college or university student; the only
academic requirement is that the accepted applicants be enrolled in an accredited academic
institution. Students must also be at least 18 years of age in order to participate. Students come
from a variety of academic backgrounds, and though most students are enrolled in a Computer
Science program there is no requirement that they be studying CS; past student participants in
GSoC have come from disciplines as varied as Ecology, Medicine, and Music.

Students submit project proposals to the various organizations participating in GSoC. The
organizations select which student proposals they would like to see funded by Google. Many
student participants have gone on to become important members of the open source
community. Many students have also gone on to become mentors and even org admins for the
program.

PROGRAM STRUCTURE

All of the program rules are enumerated in the GSoC FAQs each year. Provided all of the rules
regarding eligibility for the program are followed, Google takes a fairly hands-off approach to
GSoC. Each organization structures its participation in GSoC in whichever way makes the most
sense for its technical and community needs.

Organization Applications: The GSoC program is announced each year on the Official Google
Blog (http://googleblog.blogspot.com) among other places, and this announcement provides
application deadlines for projects. Each organization must apply to participate. The questions
asked in the organization application are published in advance and linked from the Program FAQ.
Organizations usually have one week to apply for the program. Following receipt of applications,
Google's program administrators select which organizations will participate in that year's Google
Summer of Code.

Student Applications: Students are encouraged to begin talking to the participating
organizations as soon as the list of accepted organizations is published. Prior to the opening of
applications, it is important to take some time to talk to potential student applicants. This helps
them refine their ideas so that they will produce a better quality proposal. Each organization is
asked to provide a proposal template, but the best student applications go far beyond the
template and an organization's ideas list. Students are given at least a week to complete their
applications.

Following the student application deadline, organizations begin reviewing the proposals they
received. During the review phase, organizations maintain an open dialogue with their student
applicants, asking them to refine their proposals. They may also conduct further interviews to
determine which students are most likely to be a good fit for the community and work required.
Over the course of several weeks, each organization prioritizes its list of proposals. Google lets
each organization know how many student proposals it will fund, and organizations select their
top proposals.

Sometimes a student has proposals accepted by more than one organization. Google leaves it to
the organizations and the student to decide which organization the student will work with during

the course of the program. While the organizations are not required to involve the student in the
decision process, it is good practice to take the student's preferences into account.

Community Bonding Period: Before students are expected to start working, there is a six-to-
eight-week period built into the program to allow them to get up to speed without the pressure
to execute on their proposals. During this time, students are expected to get to know their
project communities and participate in project discussion. During this time, students should also
set up their development environments, learn how their project's source control works, refine
their project plans, read any necessary documentation, and otherwise prepare to complete their
project proposals. Mentors should spend this time helping their students understand which
resources will be most useful to them, introducing them to the members of the community who
will be most helpful with their projects, and generally acculturating them.

Start of Coding: Start of coding is the date the program officially begins; students are expected
to start executing on their project proposals. At start of coding Google provides an initial
payment to the student, around 10% of the overall stipend. At this point, students should begin
regular check-ins and regular patch submissions.

10

http://googleblog.blogspot.com/

Midterm Evaluations: Approximately halfway through the program, Google requires that
mentors submit evaluations of their students' progress. If the project is not proceeding
effectively, it is discontinued and the student is dropped from the program. Students who
receive a successful evaluation from their mentors continue working on their projects and
receive a second program payment, approximately 45% of the overall stipend. Google also asks
students to submit an evaluation reviewing their project to date, their mentor's and
organization's performance, and any obstacles to their progress. Google may also ask org admins
and mentors without students assigned to submit a general evaluation of the program during this
phase.

Because software development is an iterative process, the original project plan must often be
reworked and new milestones set. Directly following midterm evaluations is the perfect time for
mentors and students to review progress to date and to reset goals for the project as needed.

Pencils Down: At the final deadline for coding, students are welcome and encouraged to
continue work on their projects, but only work done before the "pencils down" date can be
evaluated. Google suggests that all work be complete about a week earlier to give the student
time for last-minute improvements and corrections, as well as preparing their work for delivery.

Final Evaluations: Final evaluations should be based only on work the student has completed
during the program. If the project goals have not been met to the mentor's satisfaction, the
student is dropped from the program and receives nothing more from Google. As with midterm
evaluations, students are asked to submit an evaluation of their overall success. Google will ask
all participants from each organization to submit an evaluation of the overall success of GSoC.

Post Final Evaluations: Students who successfully complete their final evaluations are asked to
submit a code sample to Google. These students then receive the final program stipend
payment, a certificate of completion and a truly spiffy t-shirt. All program mentors and org
admins also receive a t-shirt.

It's a goal of Google Summer of Code that the student participants stick around long after the
program has ended and continue contributing to their project communities. Great mentors
continue working with their students to encourage them to do so. It's also customary during this
time for organizations to publish a post-GSoC wrap up report. Mentors and students take a well-
deserved break, but energetic organizations begin planning for the next GSoC during this time.

3. WHY GSOC MATTERS

In addition to the great code produced, the GSoC experience is about building open source
communities. By focusing on students, we are going to the source of all future open source
efforts. The ultimate success of the GSoC program is thus measured by the quality of the
student experience. Each organization and each mentor plays a crucial role in creating this
experience through their project ideas, developer culture, and the guidance they provide. They
are rewarded by new code and by adding skilled new developers to their ranks. But don’t take
our word for it! Heres what some of the students had to say:

“Overall, this is the most productive summer | ever had. It increased my confidence as a
developer and as a person that | can actually pull off a project like this and interact with
awesome people like you. | also become a part of a growing community and hope to help it grow
further.”

Chetan Bansal

“There aren’t many opportunities for computational biology enthusiasts to make a difference in
the field while still in school. GSOC at [my org] was one such gem of an opportunity that
illustrated exactly why writing software for biological research is benefited by a background in
biology. The experience | have gained here is definitely irreplaceable. The fundamentals of open-
source programming and the rhythm associated with regular coding and problem solving helped
nourish an intellectual side of me that | will not forget in a hurry. This is definitely not the last
time you will see me.”

Chinmoy Bhatiya

“This was the first time | took part into either GSoC or an Open Source project, and it was also
one of the most exciting things I've ever done! This project gave me the chance to spend ~3
months learning lot of new things, having fun, doing something for the community and even
getting pay for that! That’s an amazing combination! ...| will remain as an active participant of
[my org's] community beyond the official end of GSoC 2009!"

Gerardo Huck

“It was definitely a very good learning experience for me. ...But | have some unfinished works...
So I'll continue this project after GSoC, and be help to drive [my org's] development.”
Kozo Nishida

“It was the first time that | worked with an open source community and it was really a great
experience. | am very thankful to Google and [my org] for providing me this great opportunity. |
would like to thank [my mentors] for their excellent support during the summer. Looking forward
to working with you again.”

Srinivasarao Vundavalli

“It was a GREAT experience to work with [my org] during GSoC 2009 The administrators and
mentors were very helpful during bounding and coding periods. Whenever | had problems they
were always responsive and offered me help in time. Under their guidance, I've improved my
programming and communication skill, and learned how to work within a group. | would like to
express my gratitude to all my mentors in [my orgl. If | can participate in GSoC next summer, |
would like to work with [my org] again:)

Xuemin (Helen) Liu

"Get over yourself. Understand there are people smarter than you or people better at some
things than you. Just the same, you're still needed. JFDI (Just Fabulously Do It) and find your
niche."

Justin Hunter

12

"This year's GSoC was my first contribution to the open source world and | will like to continue
my contributions to open source whenever | get the opportunity. The best thing about open
source is the huge opportunity it provides to everyone who wants to explore their career in the
technical world and develop in their field of interest. The way people from different streams
come together, exploit their talents, cooperate, coordinate, focus their collective efforts towards
a common goal that will help many more people in the end is the best part about open source."
Kanika Vats

"So, we've now gotten to the end of it all. It does feel a bit sad, | really did have a great time
coding this summer and hopefully | can do it again. | don't think I've ever learned this much in a
summer job and everybody working with me have been really fantastic."

Anna Granudd

GETTING STARTED

4. NOTES FOR FIRST YEAR ORGANIZATIONS
5. WHAT MAKES A GOOD MENTOR?

6. DEFINING A PROJECT

7. SELECTING A STUDENT

14

4. NOTES FOR FIRST YEAR
ORGANIZATIONS

Dear 2012 First Year Organization,

Congrats! We know you're excited to participate in GSoC. We also know you're overwhelmed, so
we have some advice: DON'T PANIC. The GSoC team has done this before and knows what it's
doing. The program is well documented, but to get you started, here are a few tips.

General:

* This is about building the STUDENT’S experience. Getting code in your project is a nice side
effect.

* Know and meet the deadlines for every part of participation: organization administration,
student participation, and mentor participation. Use Google Calendars’ alert feature.

* Search the wiki, but don’t be afraid to ask questions on the appropriate mailing list.

* Talk to experienced organizations for advice; talk to new organizations for brainstorming.
* There’s a GSoC book. Read it: http://www.booki.cc/gsoc-mentoring/

* Spread (don’t spam) the word that your organization is participating in GSoC.

Students, mentors, and slots:

* Students are not experienced project members and will take longer to write code than the
core team. Plan accordingly.

* Mentors should expect to spend at least 10 hours a week for each student.
* The mentor/student process is:

** Receive mentor applications.

** Receive student applications.

** Request a number of slots for students.

** Receive confirmation of number of slots.

** Select students and mentors.

* The application process is a great initial test of the student’s dedication and skills, so don’t
offer students too much help during it.

* Use code tests and personal conversation to help select students. The student with the best
proposal might not be the student who can produce the best code.

* Request 1 student slot for every 2 mentors you have. As a first year organization you will
probably receive fewer than 4 students. THIS IS A GOOD THING. Use your first year to get used
to the process. Expand in your second year.

Coding, community, and communication:

* Treat the student like a core contributor. Private repos or branches can prevent the student
from blocking releases, but can also isolate the student from the rest of the project.

* Publish weekly or daily goals. This helps to keep scope, show progress, and keep students
active.

* It’s okay to fail a student. If a student doesn’t meet agreed deadlines or doesn’t communicate,
he or she should be failed.

* Make all communication public. If it didn’t happen in public, it didn’t happen.

* Show; don'’t tell. Screen sharing and pair programming are often more effective than
conversation.

If you have any questions just ask. We know you'll be awesome!
Best wishes,

GSoC 2011 First Year Organizations

16

5. WHAT MAKES A GOOD MENTOR?

Mentoring a student can be a very rewarding experience. However, being a good mentor is not
just a matter of winding up the student and watching them go. Quality mentoring requires a
substantial time commitment and the willingness and ability to take a leadership role.

There are specific skills that you can work on in order to be more effective; even experienced
mentors can improve. This chapter highlights some of the capabilities of top mentors, by
suggesting some self-assessment questions that can help you to evaluate your strengths and
weaknesses in this role.

Are you already part of the developer community? If you are not then you are going to be
less effective at introducing a student to the local culture and practices. Similarly, you are less
likely to be able to propose, guide and integrate successful projects relevant to the larger effort.
If you are new to the community, working as a backup mentor on a project may be an excellent
way to get involved. Note that some projects are more community-oriented than others; assess
the community skillset needed for your target group.

Do you have a real interest in potential GSoC projects? As a GSoC mentor you will be taking
ownership of a project idea and seeing it through the summer. If you are not excited about the
project, mentoring will be more difficult. You are an integral part of the process from project
proposal to delivery.

Are you willing to dedicate significant time? While the time requirements for mentoring vary,
you should seriously consider your prior mentoring experiences and your available time before
committing to this role. If you really don't want to mentor, or really won't have a reasonable
amount of time each week, then don't offer.

Are you keenly interested in mentoring students? A main goal of GSoC is mentoring
students. Mentoring is important to the future of open source software, our immediate projects
and the overall culture. Mentoring a student requires a combination of passion, responsibility and
patience. A good mentor is willing to engage with students throughout their learning process.

BE PREPARED TO SEEK HELP

At all times don't forget that you have access to people, tools and resources that can make
your job much easier and make you a better mentor. Make use of your org admin when you are
not sure what is expected of you or have a difficult situation with your student. Make use of
other mentors in your organization and the thousands of mentors on the mentor mailing list.
Though it may be an annoying list at times (don't feed the trolls)), it is a valuable resource. The
GSoC admins are another important resource. They set the tone and standards for the entire
program. They have heard it all, so don't hesitate to contact them when a problem arises.

BACKUP MENTORS

An organization may choose to assign backup mentors. Backup mentors are recognized by
GSoC, but not officially responsible for the project or evaluations. Backup mentors are useful
during absences by the primary mentor. They may also have relevant expertise.

WHAT TO EXPECT FROM UNDER-MENTORING

The student's project is never properly defined. The project goals and deliverables are
unclear, and the work schedule is not set. The consequences of this are serious and impact the
project if left unchecked.

The mentor has little idea what the student is doing. The state of the project is unclear, and
its progress is uncertain. Evaluation is impossible to do well.

The student produces code that isn't useful. The student starts off on 'the wrong path’,
failing to use existing functions or established project idioms. Rather than fixing problems as
they arise they keep on adding more. The code is never integrated into the main codebase

because it doesn't work well enough and would require more work to fix than it is worth.

The student gets stuck. The student seems to be engaged, and to be working hard, but no
apparent progress is being made. Alternatively, the student's communications are infrequent and
terse, and seem to always be on the same issue or milestone.

The student disappears, perhaps for days or weeks at a time. If the student is under-
mentored, it may be difficult to determine when this period began, and thus to know when to
panic. Insufficient information is available for evaluation; thus it becomes impossible to fairly
evaluate the student.

18

6. DEFINING A PROJECT

The process of defining ideal GSoC projects is not just a "summertime" activity. Such projects are
generally useful to the overall open source software development effort. The same qualities that
go into a good GSoC project go into entry projects for new developers and even projects that
help recruit new developers.

Putting together a well-defined GSoC project also forces you to think about your project from a
new point of view. This is a valuable exercise for defining the current scope of, and potential new
avenues for, your work. In other words, it can be much more than just getting help with your
existing workload.

Your goal for GSoC is to generate a list of project ideas that capture the development needs of
your organization, attract the interest of students, and help you get things done. This is often
done as a community effort that involves as many potential mentors as possible, helps create
buy-in from these mentors, and gives a broad range of perspectives on organizational needs.
Creating your list of project ideas should also be part of an ongoing long-term strategy, rather
than a rushed act to meet the application deadline. Many organizations maintain such project
lists year-round.

There is an art to writing a project description that leads to good student applications. It is
tempting to write a detailed project plan for the student to follow. However, students tend to
echo such plans in their applications, making it difficult to evaluate their quality. It is better to
briefly describe a general high-level need, and the motivation behind that need. Keeping the
scope modest helps encourage more applicants, while adding a "stretch" goal to the project
description may encourage stronger students to take on the challenge of meeting it.

One strategy is to leave an opening for students to propose their own original project ideas.
Some great ideas can come out of this process. Emphasize that the student proposing something
original must engage with the community strongly before or during the application period to get
feedback and guidance to improve the proposal.

Note that the quality of the project descriptions on an organization's "ideas page" is one criterion
for the organization's admittance into GSoC. It is worth spending some extra effort to ensure
that the projects you propose are worthy of the GSoC banner.

There are many ways to define a good GSoC project—probably as many ways as there are
student-mentor pairings. Here are just a few:

Low-hanging fruit: These projects require minimal familiarity with the codebase and basic
technical knowledge. They are relatively short, with clear goals.

Risky/Exploratory: These projects push the scope boundaries of your development effort. They
might require expertise in an area not covered by your current development team. They might
take advantage of a new technology. There is a reasonable chance that the project might be less
successful, but the potential rewards make it worth the attempt.

Fun/Peripheral: These projects might not be related to the current core development focus, but
create new innovations and new perspective for your project.

Core development: These projects derive from the ongoing work from the core of your
development team. The list of features and bugs is never-ending, and help is always welcome.

Infrastructure/Automation: These projects are the code that your organization uses to get its
development work done; for example, projects that improve the automation of releases,
regression tests and automated builds. This is a category in which a GSoC student can be really
helpful, doing work that the development team has been putting off while they focus on core
development.

The project you propose will define the tone and scope of your organization's participation in
GSoC. It is a key part of your organization's application. Further, it may be the first impression
made on a potential student applicant.

Pro Tip: Maintain an "ideas page" with a running list of entry projects year-round. This can
benefit your development effort throughout the year. It can also make your organization's GSoC
application easier to put together the following summer.

Don't Be That Guy: Don't propose projects that neither you nor anyone else wants to mentor.

20

7. SELECTING A STUDENT

Successful participation in GSoC is based on a three-way fit between mentor, student, and
project. As a mentor, your role in finding that fit is two-fold: to help the organization identify and
select strong students appropriate for your projects, and to find a pairing between yourself and a
student that is productive and pleasant. Fortunately, these goals are quite compatible.

UNDERSTANDING STUDENT MOTIVATIONS

A helpful starting point for finding, evaluating and selecting students is to look at the process
from their point of view. Why do students apply to GSoC?

"l want to be rich." The stipend that students can earn for the summer is an important
motivator for many. One of Google's explicit goals is to enable students to spend the summer
coding "instead of flipping burgers".

"] want to be famous." Being a GSoC student carries a certain amount of prestige. However,
the desire for fame is not always a sustaining long-term motivation. Be aware of the difference
between a student who wants to be "accepted" versus "successful".

"] want to learn." Students may want to learn various things as part of their GSoC experience,
such as how to work in the organization's project, how to do open source development in
general. It is important as a mentor that you are cognizant of the basic skill set required for the
project.

"l want a t-shirt." Some motivations are simple, and easy to accommodate.

Students should want to participate because they have something to contribute to the
organization's project. This is obviously an exciting and promising kind of GSoC applicant to
receive. Assuming that the student has good technical skills and can interact well, a good result
is almost inevitable.

SELECTING A STUDENT

There are some student qualifications that are important for any successful GSoC experience.
The student needs to be technically skilled, needs to have good communication skills, and needs
to be a hard worker with sufficient available time to succeed. Given only a brief application
document and some tiny amount of remote interaction, determining whether a student has the
necessary qualifications is exceedingly difficult. Hopefully the organization has an application
process in place that helps. However, as a mentor you will normally be expected to assist in the
evaluation that will ultimately decide who gets accept to GSoC from your organization.

You have several techniques at your disposal for helping your organization evaluate students.
First and foremost, your expertise is key in evaluating student proposals. Is a given proposal
technically realistic? Is it useful to the organization? Does it meet the organization's overall goals
for GSoC?

Some of the student applications your organization receives will be obvious winners, about which
little discussion is needed. Many more will be obvious losers that need no discussion at all.
Applications that fail to conform to the organization submission rules, are extremely short, or
are difficult to read or understand almost inevitably come from students who would fail
miserably if accepted. The middle ground in student applications is where the action is. There are
several techniques for assessing these promising but troubled applications:

21

Send an early query to the student asking for more information. Failure to respond well or
in a timely fashion almost guarantees problems with the student later on.

Watch the student's community interaction. The best students interact with your
organization's community during or even well before the application period. A mediocre
application is much less concerning if it looks like the student is already moving forward.

Inquire about the student's GSoC history. A student who has participated in GSoC before
may be easy to figure out. Past performance is usually an indicator of future GSoC success. This
information could be included in your organization's student application template, or obtained
from a general web search.

Find out where else the student has applied. Does the student have other GSoC applications?
Did they copy-paste the same application over and over? There are often opportunities for
negotiation with other organizations around a student who has applied several places.

Look at the student's other summer plans. A student who at least claims to be solely
focused on GSoC is more likely to be successful.

FINDING A MATCH

As a mentor you want to do more than just help your organization select the best students. You
also want to ensure that they select a student and project that you will enjoy working with.

This may involve more than just finding a bright student with the right area of expertise. It is
worthwhile to look at the personality type and work style a student application reflects. If you
are a methodical, organized person, for example, a loose and casual student style might not be
an ideal fit for you. Mentoring a student geographically far from you can be a bit challenging, but
also quite enlightening. Be aware of timezone differences that might require early morning or late
night schedules for live meetings, which are critical for effective mentoring.

For those unfortunate students that don't make the cut for logistical reasons (e.g., not enough
mentors or funded slots), consider providing feedback to let them know their applications were
valued. This is a service both to the student and to the organization. These students will be
more likely to stay engaged, possibly even contributing outside of the official GSoC program, and
returning next year with an even stronger application.

GOOGLE'S SELECTION PROCESS

The Google Open Source Program Office (OSPO) has an internal process to select mentoring
organizations and allocate GSoC positions; understanding it may help you make better student
selections. Refer to the ample documentation updated yearly for guidance on its workings.

In brief, OSPO allocates each organization a number of "slots" based primarily (but not solely) on
the number of student applicants. The organization is then responsible for ranking its student
projects. The top-ranked projects equal to the number of allocated slots are then the accepted
projects for your organization. You should also understand how student selection and mentoring
can affect the eligibility of an organization. In particular, note that a poor job of mentoring may
lead to a poor outcome, making it less likely that your organization will be selected in future
years.

22

STARTING AT THE BEGINNING

A successful GSoC project begins with a successful initiation. Finding the right three-way fit
between mentor, student and organization can make success incredibly easy. Conversely, failing
to find this fit makes it difficult or impossible for the project to succeed.

Once a fit is found, the project is ready to be elaborated. You and your student are prepared to
embark upon a grand adventure. Excelsior!

Pro Tip: One temptation to be avoided is to give a promising student excessive help in rewriting
their application. It is likely that the result will be an application stronger than the student it
represents. Students' communication, organization and logical thinking skills rarely improve over
the course of a summer.

Pro Tip: If in doubt about a student applicant's final ranking after allocation, err on the side of
rejecting. Limited program budget and mentor time can most certainly be better spent on
another student in your or another organization. Yes, you can release slots to other
organizations!

Don't Be That Guy: Don't even think about selecting a student with whom you've had no
contact. You should establish an active back-and-forth prior to making a decision. If you or your
student have failed to make this happen, do not proceed.

23

COMMUNICATION

8. COMMUNITY BASICS

9. BEST PRACTICES

10. WARNING SIGNS

1. OPEN SOURCE CULTURE

24

8. COMMUNITY BASICS

Your community is the collection of people who work on or with your project. Helping your
student become familiar with those people makes them a more effective contributor during
GSoC and helps to make them feel part of your community, which encourages involvement after
their GSoC project is completed.

SET THE TONE

As a mentor, you can really help to set the tone for your student's initial experiences by
facilitating community. Encourage your student to introduce themselves on mailing lists and IRC,
and invite comments on their proposal. If your project maintains biographical information on
contributors, ask your student to read through this information, and spend some time talking
with your student about the people with whom they may interact.

Once a student has a feeling for who's who in the community, they are more likely to
communicate and seek advice from others. This increases their chances of getting issues
resolved more quickly and effectively than if they relied on only their mentor for help.

ENCOURAGE QUESTIONS

Asking effective questions is a skill, not an innate talent. There are many resources for learning
how to ask questions effectively, and Eric Raymond's classic "How to ask good questions"

(http://catb.org/~esr/fags/smart-questions.html) is a great place for students to start. Another

useful resource is Simon Tatham's "How to Report Bugs Effectively”

(http://www.chiark.greenend.org.uk/~sgtatham/bugs.html) which isn't explicitly about asking

questions, but does cover aspects of effective communication about technical issues.

Before your student asks a question, it's often helpful for them to take a minute to struggle with
it and attempt to find the answer on their own. That extra effort often helps your student to
solve their own problem. If not, it sharpens the question they ultimately ask.

CRITICISM HAPPENS

Discussion in open source communities can be very direct. People will often criticize the bad
points of a patch or suggestion, but fail to praise what is good about it. Explain to the student
that comments aren't meant to be critical of them as a person, but are aimed toward improving
the patch or idea and the project in general. Making potential new contributors feel welcome in
your community is also important outside of GSoC.

Pro Tip: When you announce to the community that you're taking part in GSoC, make a point of
explicitly asking people to make the students feel welcome.

25

http://catb.org/~esr/faqs/smart-questions.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

9. BEST PRACTICES

Effective communication between mentor and student is absolutely vital to a successful and
rewarding GSoC experience. Here are some tips for encouraging good communication:

Share contact details: Swap contact information with your student and org admin early on. If
your contact information changes, be sure to tell people, and make sure your student does too.
Be sure to keep the org admin informed about when you may be unavailable to your student, so
that they are not caught unaware when your student contacts them.

You need to take care if you are planning a trip during the summer, especially if it is more than a
few days, or near milestones in the GSoC timeline. If you coordinate with your student
beforehand and give them sufficient work to chew on, it can go smoothly. What you don't want
is for your student to be blocked on something while you are inaccessible and do nothing until
you return. Make sure to give your student many different tasks to work on, so that she can
work on something else if you are not available. This is a great time to utilize a secondary
mentor to act as a backup in your absence.

Choose communication channels: Decide upfront how you are going to communicate with
your student and what type of technology or medium you are going to use. Don't wait until mid-
way through GSoC to figure out that one of you can't get your microphone working on your
desktop for voice chat.

It's good to make use of multiple means of communication, as different platforms can
complement each other. Instant methods like IRC or IM are great for getting a quick answer or
for interactive discussion, but require both parties to be available at once. Public communications
are generally preferable to private ones.

Although many people prefer text-only communication, it is very helpful to talk on the phone or
video-chat with your student at least once at the beginning of the program. Hearing a voice or
seeing a face can help people feel more connected, creating a sense of mutual respect and
responsibility.

Decide on the frequency of reports: Discuss and decide the frequency and form of status
reports upfront. Many organizations require students to deliver weekly status reports. Make sure
you clearly delineate in what format the reports should be delivered and what information needs
to be included. Providing an outline or template can be helpful.

Establish frequent chatter: You really want to be hearing from your student more often than
once a week, as this is a long time for a student to be stuck or heading up a blind alley. Be sure
to encourage and instigate communication throughout the week.

Provide a safe environment: Create an environment in which your student feels comfortable
enough to ask questions that may sound "stupid". This will help the student to avoid getting
stuck, and foster positive mentor-student and student-community relationships. Good
relationships are extremely important for GSoC success, and for fostering and encouraging long-
term contributors.

Here are some ways to help your student understand that his question is valuable:

Avoid gruff “RTFM” replies: It's likely the student will ask questions which are answered
somewhere in your project's documentation. However, do take a few moments extra to politely
point to the information, or you'll risk the student feeling reluctant to ask next time he has a
question.

26

Ask some stupid questions yourself: Chances are your student knows some things you don't
know or that you've just forgotten. Don't be afraid to ask your student questions.

Be inclusive: If you're asked a question which someone else in your project could answer better,
put your student in touch with them. Invite your student to participate in your community
events, not just the core development processes. Invite your student to attend group retreats
or related conferences.

Introduce your student to the community's communication style: Some groups have
developed codes of conduct, such as the Fedora IRC Helpers Code of Conduct
(http://fedoraproject.org/wiki/IRC_helpers_code_of conduct), which help initiate new members and
guide the interactions of existing members. You are encouraged to read the code of conduct and
think about which issues and solutions might apply to your group.

Follow mailing list etiquette: The GSoC mentors mailing list has more than 3000 subscribers. If
you have a question for the Google team, mail ospoadmin@gmail.com instead of the list. Please
take a moment to review list etiquette (http://www.gweep.ca/~edmonds/usenet/ml-

etiquette.html).

Address communication disconnects: When working with people for the first time, a best
practice is to assume that they do not mean any harm. If your student makes a comment via
email that offends another member of the community, it's appropriate and constructive to
speak up and address the issue. Assuming that the comment was the result of
misunderstanding, rather a result of malice, allows you to ask questions and help your student
adjust to your community's communication style.

After asking questions, you can then offer an explanation to a person or a suggestion on how
they could behave or phrase their comments differently in the future. When offering coaching on
how to behave, be mindful of embarrassing your student in public about what's happened, or
demanding apologies. If possible, talk to your student one on one, using an immediate
communication medium like IM, IRC, the telephone or a face-to-face conversation. This is better
than sending email. Remember that you're telling someone that they did something wrong; keep
in mind how you'd feel if someone was telling you that you'd made a mistake.

Apologize Effectively: Making apologies is a fact of human life, and open source communities
are no exception. In the event that you or a student finds themselves needing to make an
apology, there are a few things that might help you apologize effectively:

e Make the apology as soon as possible
e Make it clear in the subject line that you're apologizing
e Make it an honest apology and not a defensive statement in disguise

GIVING AND RECEIVING CRITICISM

Mailing list culture and public code review can be a rude awakening for newcomers. Submitting a
patch to a mailing list might be a student's first experience with public critique of their code.

Project policies vary widely on how contributions are treated. Some encourage committing early
and often, hopefully maintaining a stable branch for bug-fixes. Others refuse to commit code to
the core repository until a patch is fully discussed, tested and documented. Most projects lie
somewhere in between.

All projects engage in some form of code review and the inevitable criticism. Having people look
at and ask questions about your code is a fact of working in the open source world. Direct code
review is one of the great strengths of open source development. Direct review helps people
hone their coding skills and learn rapidly from others. Bugs are found quickly and fixed. The
whole process is documented in source control repositories and mailing lists and made available
online.

27

http://fedoraproject.org/wiki/IRC_helpers_code_of_conduct
mailto:ospoadmin@gmail.com
http://www.gweep.ca/~edmonds/usenet/ml-etiquette.html

Here are some ways that you can help students prepare for code review:

e Provide example mailing list threads or a list of the types of questions that are asked
about code.

e Direct students to review coding standards that apply to your project.

e Go through an example code review on the student's first code sample submission that
matches as closely as possible the process that your project normally uses.

People are more likely to respond positively to criticism from those that they trust and respect.
Try introducing students to the people that are likely to comment on their code, and explaining

the role that those people play in the group. Also, encourage students to both defend technical

decisions, and be gracious in admitting mistakes.

Code, in addition to being mathematical and scientific, has been compared to poetry or creative
writing. Most developers associate a sense of ownership and creative discovery with their code.
You may have "gotten over" the bruised ego you received the first time that someone criticized
your variable name or algorithm choice. However, your student may be experiencing this pain for
the first time. A simple "thank you" when students publish code, send email to a mailing list or
make other contributions goes a long way.

Make an effort to assist a student in their first steps into your community. Offer to proofread
emails, blog posts, or patches. You don't want to do all the work for them, but you can help
students feel confident in their communication, especially when they're just starting out.

Pro Tip: A good status report should include a few items that went well during the previous
period, and a few problems that were encountered and how they were addressed.

Don't Be That Guy: Don’t ever give your student the impression that you think that only stupid
people ask questions. Be nice. Remember that you were once a beginner.

28

10 - WARNING SIGNS

As a GSoC mentor, you are in the best position to identify "red flags" and warning signs early on.
This is critical to addressing problems before they get out of hand. Learn from the mistakes of
others, and learn how to identify and mitigate the following warning signs.

Not enough hours in the day: If your student has a full-time job or is attempting to defend a
graduate thesis during the summer, that is probably going to not work. Even though your
student thinks they will have enough extra time, don't believe them. They won't. If your student
has every single minute of every day completely booked, any unexpected event, such as getting
sick or a family emergency, derails this plan beyond repair. If your student cannot commit to a
specified time schedule, this is an immediate red flag that they need serious help with time
management.

Missing student: Missing a predefined meeting is a serious warning sign that your student is not
taking the process seriously and this should be remedied as early as possible. If your student
was in such a deep "coding zone" that they forget the meeting, and you have it later on, that
might be acceptable.

"My village was invaded by aliens": What is a valid excuse? Students have been known to
come up with outlandish excuses as to why they are not meeting their milestones. (You did agree
on milestones beforehand, right?) If you think that your student is lying to you, that is a huge
warning that things are going sour. Make sure to remind them that "real life just got in the way, |
will redouble my efforts next week" is always better than "my village was invaded by aliens."

Bad students happen to good mentors: One thing to keep in mind: Sometimes bad students
happen to good mentors. Don't take it personally. If a mentor tries their hardest and their
student fails, this does not reflect badly on the mentor.

"ACTIONS SPEAK LOUDER THAN WORDS"

This bit of folk wisdom is proven year after year during GSoC. A mentor will write to the
mentors mailing list asking for advice about a student that has not performed or gone missing
for a period of time. Mid-term evaluations are coming up and the student has reappeared,
reinvigorated, with no shortage of excuses. Now the mentor must decide: "Should | pass this
student?".

The GSoC mailing list contains story after story from other mentors who ignored the warning
signs, only to be disappointed later. A mentor considers this advice, but focuses on the unique
aspects of their particular situation and passes the student...and their story is added to the list
the following year.

Here are some specific scenarios to watch out for:

The Disappearing Student: A student submits a great proposal and is enthusiastic about
discussing the project and getting started. You rank them high, they get accepted, and then they
drop off the face of the earth. Fail.

Underperformance: The student sticks around for the community bonding period, but then it
comes time to work. When it comes to actually writing code, they seriously under perform. They
offer excuses when pressed, and offer scraps of code here and there. Then comes the mid-term
evaluation and start committing like crazy. Fail.

29

Wrong Priorities: The student passes the mid-term and then goes on an unscheduled holiday
for two weeks or starts a part-time job and the quality or quantity of work is seriously affected.
You discuss this with them immediately and they promise to reprioritize, but the work is not
produced. Fail.

Depending on your personality type, some of these might seem harsh. You might also shoulder
some of the blame because you think that if you had been a better mentor, more on top of the
situation, it would have been avoided. But even if you are partly to blame, so is the student. And
it is up to the student to perform when expectations are communicated and agreed upon.

Pro Tip: In the event your student's boat is sinking, all mentors are equipped with emergency
rocket-propelled jet skis.

30

11 . OPEN SOURCE CULTURE

When you encounter an open source group for the first time, it may be a bewildering experience.
Whether posting to a mailing list for the first time, blogging about the project you're taking on or
hanging out on an IRC channel - the way people interact, and what they expect from each other
is pretty different than in classroom or with friends and family.

OPENNESS AND SHARING

Open source communication can vary a lot. A core value held in common is that sharing code is
good. Regardless of license, language or indentation style, open source developers create, share
and modify source code together.

Working on code together means a lot of things: transparency, directness and cooperation are
words that are often mentioned by developers when describing the process. It can involve bug
reports, code refactoring, implementing new features, documentation, project management and
advocacy.

Amazingly, the ways in which people actually share code are as varied as the individuals involved.
Even if you have previous experience with other open source projects, keep in mind that you still
need to take the time to learn how the new open source project works, and acquaint yourself
with their particular brand of sharing.

One aspect of "open culture" is that people are informal. People address each other by first
name. They tend to speak directly to one another, regardless of social status or formal title.
Disagreements about code, whether as profound as which algorithm is most appropriate, or as
seemingly mundane as how many spaces are used for indentation, are aired in public. This
process is very intimidating to newcomers, who might be concerned about having their words
immortalized on the Internet, and worse, saying something wrong or embarrassing. The only way
to get over this fear is to practice and participate publicly.

Although "open culture" is generally informal, it is important to remember that you still need to
mind your manners when participating in conversations.

31

REMOTE COMMUNICATION

Many projects involve individuals who are working not only in different cities, countries and
continents, but collaborating across major cultural and language differences. And rather than
having procedures or policies on how to interact with one another handed down from HR
departments or other authorities, communication practices evolve between individuals over time.

Because there are few rules around working together on open source projects, there is a lot of
freedom to share directly with one another. This freedom is at the core of what attracts many
people to open source software. Multi-cultural projects offer an incredible opportunity to share
knowledge between individuals directly. With sharing, however, comes a responsibility to inform
new participants about expectations for communication and ways to solve misunderstandings to
the benefit of all.

Be mindful of cultural assumptions about race, gender, sexual orientation and disability. People
often make assumptions, have stereotypes or are biased in ways that no one can control. The
best practice is to assume that people don't mean any harm, and when they're told respectfully
that they've offended or hurt someone, that they'll stop whatever it is that they are doing that
is harmful.

All that tolerant rhetoric aside, it is never productive for an open source project to allow
individuals who consistently try to cause harm to others to do so. If you are causing undue
problems don't be surprised if you are asked to discontinue your participation regardless of your
contributions. It's often better for an open source project to ask someone to leave, than to allow
them to harm others and in turn, cause other productive members of your team to depart.

ABBREVIATIONS AND SLANG

People come up with abbreviations and slang that are meaningful inside the group, but not
necessarily to outsiders. Ask questions when you don't understand a term, a joke or some
arcane bit of project lore.

Here are a few useful resources for teasing out meaning from initialisms, acronyms and
abbreviations:

Urban Dictionary (http://www.urbandictionary.com)

Webster's Online Dictionary (http://www.websters-online-dictionary.org/)
Acronym Finder (http://www.acronymfinder.com/)

A to Z word finder (http://www.a2zwordfinder.com/)

VOLUNTEERISM AND GIFT ECONOMIES

Donated time are the life blood of open source projects. Many individuals contribute their time
and energy without any expectation of compensation or even a simple "thank you" in return.

Contributions to projects are often self-directed, with developers having a personal itch to
scratch in the form of a new feature, by correcting a bug that they've encountered or by
implementing something from a TODO list. Projects operating in this way may seem chaotic if
you are only familiar with top-down management - where teachers, professors or bosses tell you
what to do and when. Of course, some projects do have clearly defined project management,
with milestones and tasks meted out carefully.

Because many (or in some cases all) contributors are volunteering, methods of coercion available
to businesses are not available. The best way to collaborate is to behave in a way that
encourages others, and ultimately, makes people want to contribute. Some easy ways to
encourage volunteerism include:

32

http://www.urbandictionary.com/
http://www.websters-online-dictionary.org/
http://www.acronymfinder.com/
http://www.a2zwordfinder.com/)
http://www.a2zwordfinder.com/

e Saying thank you

e Giving compliments when they are deserved, regularly and in public

e Publicizing cool hacks and features as they are implemented, in blog posts and on the
mailing lists

e Promptly committing useful code

e Responding promptly to requests for information

o Clearly defining ways to contribute to your project (TODO lists are great!)

Consider treating every patch like it is a gift. Being grateful is good for both the giver and the
receiver, and invigorates the cycle of virtuous giving.

Overall, your goal is to help create and maintain an atmosphere around contribution that is
enjoyable. What that means will vary significantly depending on the project, but certainly the
above points apply to any project.

33

MENTORING

12. MIND THE GAP

13. SETTING EXPECTATIONS
14. WORKFLOW

15. MANAGING THE PLAN
16. EVALUATIONS

34

12 MIND THE GAP

The community bonding period is the 6-8 weeks between GSoC student acceptance and the
start of coding date. Here are some of the goals of this period:

e Prepare students to immediately start writing code at the official start of coding.

o Get students engaged socially in the project.

e Provide time for students to learn about the development practices of the organization.

e Ensure that students have a development environment set up. This includes getting set up
with the project version control system and reading up on necessary documentation.
Further refine the strategic plan for project completion.

o Get required forms filled out, such as the tax forms required by Google, any contributor
license agreements, and any paperwork that your project requires.

This period was added in 2007 to help students integrate with their development community and
so encourage them to become lifetime contributors. New contributors to a project outside of
GSoC often lurk in a project's IRC channel and/or mailing lists for weeks or months before
submitting their first patch. The community bonding period is an attempt to improve that
experience.

Successful completion of your student's GSoC project depends a lot on the bonding period. Make
sure that you and your student make good use of this time and make significant progress on
preliminary tasks. The community bonding period is also a good chance for the students to start
interacting with each other. Early connections can help the students support each other during
coding.

Ideally students are ready to start writing code at the official start of coding, and are already
engaged socially. During the community bonding period students are expected to learn about the
development processes of their organization, ensure they have a development environment set
up, get set up with the project version control system, read up on necessary documentation, and
further refine the strategic plan for successful project completion.

Plan weekly activities for your student that only take an hour or two. The community bonding
period occurs when students are likely to still be taking classes and have a full load of course
work. It's unreasonable to expect that the student will be available full-time to work on GSoC at
that point.

Pro Tip: Students are meant to be "in good standing with their community" to receive the initial
payment at the start of coding. If you don't hear anything at all from your accepted student
during community bonding, or the student explicitly drops out, tell Google. It may even be
possible to select a replacement student.

35

13 - SETTING EXPECTATIONS

Successful mentors set expectations at the start of their projects. This includes communication
frequency, project goals, availability and ways of delivering feedback. While the mentor should
take the lead in expectation setting, the process of creating and documenting the expectations
must be collaborative. Students and mentors need to agree on what is expected, or success
becomes quite difficult.

DEFINING SUCCESS

Performance measures make it easier to provide feedback, to help your student get back on
track if she veers off-course. Clearly stated measures also help you make a fair determination
that a student needs to removed from the program.

Get student input: Make sure your student has input into the types of performance measures
used to determine success or failure. It is very important that your student helps create the
performance measures to determine project success and failures. Your relationship should be a
highly collaborative one.

Set achievable goals: Help your student come up with manageable project goals. Rather than
defining the project as one giant chunk, help your student break the project goals down into
smaller pieces or "inchstones" that allow a change in direction if necessary. It is sad to work the
entire summer on one giant deliverable, only find out in the last few weeks that the architecture
or design is defective.

Anticipate time away: Make sure to set expectations for known or planned time away from the
project, such as course work, vacation trips or holiday time. Talk about how many hours or
deliverables per week would be reachable goals and what amount would be a good stretch goal.

MANAGING OUTPUT

Decide in advance what happens when project goals aren’t met. Remember to be flexible if your
student has made good progress or has obviously worked hard but needs to re-scope the project
at mid-term. Good project management is hard. Your performance measures will help you
manage project modifications.

Plan for Slippage: Have a plan to deal with scope-creep and timeline slippage. What if something
happens that prevents your student from working successfully for an extended period of time?
At which point do you need to terminate the project? Have a plan in place for these scenarios.

Gather Feedback: Your student's wishes and desires for a successful project are as important
as the project goals. Make sure that you solicit and incorporate her feedback when coming up
with initial goals, performance measures and communication methods.

Overall, communicate and be reasonable when it comes to your students. Be ready to revise
project plans if an unexpected requirement or bug occurs.

Pro Tip: Ask about the weather and local stability of public services. Is your student using the
cafe down the street for Internet access? Are there seasonal weather conditions that may lead
to flooding and the subsequent inability to turn-on one’s computer? Work on a plan to address
these types of environmental issues that can affect both communication and output.

Don't Be That Guy: No one likes dictators. Work with your student on the development of
expectations, rather then barking out orders.

36

14 WORKFLOW

Make sure that your student is familiar with the workflow of your community as early as
possible. Learning the toolchain a project uses, such as libraries, version control systems and
bugtrackers, is high priority. Workflow also encompasses code review, talking with other
developers about which algorithm is best for the problem at hand and other meta-questions
about how to best get from specification to implemented solution.

The best kind of workflows for the GSoC projects are iterative. That means that small,
quantifiable goals are defined and then acted upon. For instance, an example of an iterative
workflow is:

e Write a test that demonstrates what feature will be added.
Run the test to verify that it fails in the way you think it should.
If it fails in an unexpected way, your test may be wrong. This is a great time to ask your
mentor for guidance.
e [f it passes, you are done! You just added test coverage to an already existing feature, and
that is great!
Add the feature (also known as "a simple matter of programming").
Run the test to verify that it passes.
Write documentation about your feature.
Rejoice appropriately.

This iterative workflow is known as Test Driven Development (TDD). This workflow gets applied
to each feature that will be implemented, so a TDD workflow will consist of many cycles of the
above steps, each for a different feature. The polar opposite of this workflow looks something

like this:

e Write code the first 1/3rd of the summer
e Write tests the next 1/3rd of the summer
e Write documentation for the last 1/3rd of the summer

This is almost always doomed to failure, since people are always optimistic about time estimates
for completing something. Sometimes you must debug a weird issue. You can't predict how long
it might take to resolve the issue. What usually happens in this workflow is that the code gets
written, but takes longer, half the tests get written and no documentation is written because the
students have run out of time.

Take an approach which produces usable code even if parts of your plan fail, or are never
attempted. Be humble and flexible about your development model. The student may teach you
something!

Pro Tip: Progressive milestones may allow code to be merged progressively.

37

15 MANAGING THE PLAN

The student and organization application process to GSoC helps all participants think about how
to run the Google Summer of Code at a community level. One important tool is the creation of a
strategic plan. The phrase "project plan" frequently elicits a Pavlovian response of groans, shrieks
and malaise in techies. An even more severe reaction has been observed in open source
communities. So let's talk about a "strategic plan" instead, and how it can help your student be
successful.

CREATING A STRATEGIC PLAN

The GSoC application process assists in developing a good preliminary outline of a strategic plan
for the student's accepted project. To increase the probability of program success you should
spend time with your student, and your development community, refining the plan developed in
the application period. This can be done during the community bonding period. A good strategic
plan includes:

A high-level design document: Think about the architecture and design of the new feature or
enhancements that you are making to your community's project. Take some time to teach your
student to think about usability by writing a few quick use cases and scenarios, and consider the
introduction of any new dependencies.

Progressive milestones that build on the previous work: At the completion of each
milestone you and your student should take the opportunity to celebrate the accomplishment
and reflect upon it. Using progressive milestones also gives you a good measure of how far you
have come, which can be very useful during periods of frustration. Additionally, if you don't reach
all of the final goals of the project, you will have tangible achievements to point to when
reviewing progress with your student. Reinforcement of a student's tangible accomplishments
encourages them to stick around and helps to create life-time contributors.

Target completion dates for each milestone: In reality, completion dates are going to move.
Nonetheless, a target date gives you a time frame for closure and helps control "scope creep".
Coach your students in how to recognize that a milestone is going to be missed, and to notify

the project participants before the dates passes.

Tasks associated with each milestone: Because your milestones are most likely going to be
chunks of of code, each milestone needs to include both testing and documentation around that
particular "chunk." This approach helps guarantee that you and your student don't end up with a
pile of code that hasn't been tested or documented at the end of GSoC.

FOLLOWING THE PLAN

After you create a strategic plan, you actually need to follow it. Some ways you can use your
strategic plan to stay on track are:

Collect regular status reports: Status reports are an important communication tool. They are
also important in making sure that time-line slippages and scope creep are addressed in a
proactive manner. You do not want to find out two weeks after a milestone due date that your
student has slipped the date because they have been unable to solve a simple problem.

Check off associated milestone tasks: Find a way to keep track of tasks, and then indicate
when they are completed. This can be as simple as keeping an informal to-do list in that is
referenced in weekly status reports. You can also use the project management software that
the rest of your organization uses. Do what works best within your community, but make sure
you do something.

38

Set an expectation of prior notification of missed deadlines: Your student is going to miss
project deadlines. Make sure that he understands that it is important to notify you of the missed
deadline well in advance. Understanding how long something is going to take to complete is

a valuable skill, but it is one that is learned through ongoing evaluation.

If your student misses a deadline, make sure you discuss why: Helping your student
understand where he become bogged down or stuck helps with future strategic plan
development. Remember that you are cultivating a long-time contributor.

Be a good example: If you, the mentor, need to miss a deadline, make sure you communicate
this to your student well in advance.

DELIVERING FEEDBACK

Throughout the project you should be delivering effective feedback to your student about their
code, communication, and documentation.

Deliver feedback early: Don't wait until several issues have come up, or until your student has
impressed you multiple times with their efficiency. Let them know right away what you think
about their work.

Make a point to give positive feedback: The open source community parcels out comments
all too frugally. When a student completes a task on time, and especially when they exceed your
expectations, let them know! Early praise is a far better motivator than late criticism.

Don't avoid critique, but don't be a jerk: Try to put yourself in your student's shoes, and
consider how you might want to hear constructive criticism. Phrase suggestions positively.
If criticism is personal in nature (i.e. tone of an email, timeliness or other non-code issues),
deliver it in private rather than in a public forum. When in doubt, ask for advice from more
experienced mentors or from your organization's administrator.

Pro Tip: Don't let the development of your design document become your GSoC project. It's
useful to set a date for completion of your strategic plan and add a "Start of Coding" milestone.

Don't Be That Guy: Don't be overly-critical of date slippage. It happens. Fanatical adherence to
dates does not lead to successful project completion, nor does it make your student feel excited
to contribute to your community long-term.

39

1 6 - EVALUATIONS

Evaluations are a critical component of the GSoC program. Both at mid-term and at the end,
evaluations serve to expose process flaws, assess performance, and precipitate pass/fail
decisions. Taking time to evaluate the progress and workflow of the project provides an
opportunity to correct course and address underlying issues. Most importantly, it provides a
structure in which to give valuable criticism and praise to the students. After all, they are
supposed to be actively learning (not just working) and effective learning requires evaluation.

Unlike code critique, which happens openly on mailing lists or other public forums, performance
evaluations are personal in nature. Delivering the mentor-student evaluations should be done
privately. And more generally, remember the maxim: criticize in private, praise in public.

There are four types of evaluations:

Student evaluations: Each student fills out a mid-term and final evaluation pertaining to their
experience and their interaction with mentors.

Mentor evaluations: Each mentor fills out a mid-term and final evaluation covering their
participation and their student's performance.

Org Admin evaluations: Each org admin fills out a mid-term and final evaluation about their role
in the program.

Program evaluations: Every participant in GSoC answers questions about how the program is
operating over all.

These are provided online by Google at specified times with deadlines. The deadlines are
important for organizing the payments to students based on the pass/fail decisions by their
mentors, so you should ensure that you complete your evaluations on time. Remember, if a
student fails at the mid-term, they will no longer be part of the program and will not receive any
more payments from Google.

THEY WON'T KNOW UNLESS YOU TELL THEM

It is important to note that other than the pass/fail status, students do not have direct access
to the evaluations of their performance. Mentors are welcome to make a copy of their
evaluation and share it with students directly. Students are welcome to do the same, but it is
not required for either the mentor or student to share their evaluations with the other. Make
sure to thoroughly check the topics covered by the evaluations regardless of your choice to
share them with one another.

Mentors may not have access to student evaluations. Org admins have access to all evaluations
submitted by their org's mentors and students. Mentors have access only to their own
evaluations, not to the evaluations submitted by their student. Thus, if you want to give
feedback to your student (and you should!) you need to send this feedback directly to them; you
cannot rely on Google to do it for you. While this may change in the future, it is important for
mentors and org admins to coordinate in assessing the student and mentor evaluations and
taking appropriate follow-up action.

Evaluations should result in a direct review of the student's progress and should be conducted
using a real-time communication medium. This can be by phone, your favorite voice-over-IP
service, or in person. The discussion should be frank and in the context of periodic review so
that the student is prepared for criticism and to work with you to revise workflows, timelines
and habits. Take time to explain the value of learning how to take criticism and praise in a
professional setting.

40

When delivering reviews of student performance, be specific about both positive and negative
aspects of a student's performance. Make the suggestions for change or improvement relevant
to what your student is currently working on, and provide specific examples. As you prepare for
your student's review, you might write it out as though you were sending an email; this will help
you to frame your thoughts and to ensure that you are providing a balanced perspective. Make
the student aware of the review schedule well in advance. If you provide a written copy of the
review, schedule time for discussion immediately after the student reads it.

WHEN IN DOUBT, FAIL THE STUDENT EARLY

This is harsh-sounding advice. However, Leslie Hawthorn reports based on a back-of-the-
envelope calculation that more than 85% of the students who are reported as marginal at or
before the midterm eventually fail GSoC. Whatever problems your student is currently having,
they are likely to be worse than you currently appreciate, and to get worse rather than better
over time. You are not doing your student, much less yourself, a service by prolonging the
agony. Most GSoC students and their mentors have a great time and get a lot done. If you are
having the other kind of experience, cut your losses and try again next year.

Note that GSoC gives mentoring orgs quite a bit of flexibility and cuts them a lot of slack. In
particular, if a student fails during the community bonding period, there is likely an opportunity
for the organization to substitute another student, or to give the slot to another organization to
do so. Students need to understand that they are being evaluated from before they are
accepted to the end of the program, and that you take the GSoC experience seriously and
expect them to do likewise.

IT'S NOT IMPOSSIBLE TO TURN THINGS AROUND

A true story: Once upon a time there was a student with limited English. The mentor considered
the communication difficulty as a potential issue, but the student was enthusiastic, and hoped to
use GSoC as an opportunity to improve his English.

The community bonding went well, but during the first half of coding, progress drifted off track.
The student's mentor was much busier with work than was anticipated, and the student became
stuck several times with various issues. The student failed to proactively ask for help, and the
mentor didn't catch this, so the student became disheartened.

At the midterm, progress was disappointing, and the project came close to failing the student.
But as the mentors looked at how they might try to rescue the situation, and after discussion
with the student, the project came up with a concrete plan. The student had a job in the lab for
about 8 hours a week, which he agreed to put on hold until the end of GSoC. Each day the
student updated a Google document with what he was working on. This included reviewing any
outstanding issues which might block progress. The student would camp on IRC during the hours
he worked on his project.

Additionally, a second mentor was brought in, so that a mentor would always be available when
the student might be working. Progress was discussed daily. The organization also made it clear
that if the plan didn't succeed, that the failure would reflect badly on both the organization and
the student. All those involved were happy to work to address any additional issues that might
come up.

By the final evaluation, the student was almost back on his original project plan, and had
completed all the required goals.

It is possible to rescue a failing student, but you need to really consider the issues, and come up
with a plan to address them which everyone involved buys into. You also need to be prepared
for the project to fail, and be okay with the extra energy you have invested not resulting in the
outcome you wanted.

4

MENTOR, HEAL THYSELF

This is also an important time for self-evaluation. Are you managing your time adequately? Do
you know where the project is at and where it is going? Are you enforcing the deadlines you set?
Are you integrating your student into your community?

Take the evaluation period as an opportunity to get feedback from students. Is there any way
that you could have helped the student more? How does the student think you be more
effective as a mentor? Ask your student directly for feedback.

42

WRAPPING UP

17. UPSTREAM INTEGRATION
18. BUILDING A LIFETIME CONTRIBUTOR

43

1 7 - UPSTREAM INTEGRATION

Every project wants to get useful code. And once you get that code, you'd love to be able to
commit it to your project and make use of it! The following are some helpful hints on making
that process easier on both the students and the committers to your project.

Note: We use the term 'committer' throughout this section to mean the person or people
responsible for adding or merging code to your organizations authoritative source code
repository. Terminology and source control methods vary so widely, that it was difficult to
choose a single term. Committer seemed to cover the widest variety of situations.

RECRUIT COMMITTERS EARLY

Typically, one or more committers to your project will be involved in GSoC. For very large
projects, it can be helpful to alert all committers to upcoming student submissions. You can ask
for them to be a second reviewer on patches from students, or simply keep them informed of
your student's work schedule. This helps them know approximately when to expect code
submissions.

GET THE CODE

It's best if you can get the code committed to your project's repository as early as possible.
Whether you commit this to your project's equivalent of HEAD, to a development branch or a
feature-specific branch, getting student's code into a publicly available and canonical location
early is a good thing.

Even if your organization is unwilling to have student code drop directly into a released or
releasable version of the org's project, it is a good idea to make sure that it is captured by the
organization somehow. This ensures that you and your organization has a backup copy of the
student's work. Getting the student's code into an unstable version or feature branch at the
start of GSoC ensures that everything of value will be captured, decreases the eventual
integration burden, and provides a better mechanism for community review of student code.

DIVIDING UP PATCHES

Many organizations take student code submissions in the form of patches. It is considered best
practice to keep patches confined to a single feature at a time. Sometimes this is not possible,
but encouraging students to submit their changes as they are working is always better than a
massive "patch bomb" at the end of the program.

You can help your student by talking with them about how to divide their code into reasonable
submissions to the project. This should include setting time-based milestones, grouping certain
features and implementation details together and requiring that tests or specifications be written
first. Using pseudocode, rapid prototyping and iterative design methodologies can be helpful in
structuring your student's work and keeping you in the loop.

Be sure to set aside some time to teach your students how to use your revision control system,
and especially its code merge tools, during the bonding period. This is both for their benefit and
to save your time. If the student already knows how to test merging their changes before
submitting them, it is far more likely that less time will be spent fixing patches which don't apply.

PATCH REVIEW

44

Make review of submitted patches an explicit task. By doing so, you make it easier to hand
some or all of the review off to another member of your community. This kind of delegation
makes the student more a part of your development community, and reduces the overall work
that is required from you.

Ultimately, you'll be responsible for understanding and performing a final review of the code for
the student's GSoC evaluation. However, there's nothing wrong with bringing other people into
the process.

Some projects have a documented review process. A good example is on the PostgreSQL

Developers Wiki (http://wiki.postgresql.org/wiki/Reviewing_a_Patch), some of which was used as a

reference for this section.

Many people feel that they're not qualified to do a full review of a patch. But review includes
many different tasks, and even if you can't do all of them, a reviewer can help your organization
by taking on some or all of pre-commit tasks.

If you can apply a patch and you can use the new feature, you're already qualified to start
reviewing it.

A reviewer does not need to guarantee some level of quality, but they do need to report any
problems they find. The review is done if you think the patch is ready for in-depth review from a
committer. See this patch review at http://archives.postgresql.org/pgsql-hackers/2009-
07/msg01103.php as one example of the output a thorough review might produce. Reviews for
other patches might, of course, contain different sections or for that matter, look completely
different.

Questions a patch reviewer might ask include:

Does it include reasonable tests, necessary documentation, an overview of features, etc?
Does the patch actually implement what the author intends and work as advertised?
Does it follow a relevant specification, RFC or the community-agreed behavior?

Are there corner cases or failure situations the author has failed to consider?

Does the patch slow down simple tests or other features?

Does it follow the project coding guidelines? For an example, see
http://developer.postgresql.org/pgdocs/postgres/source.html

Will it work on all supported operating system and hardware platforms?

Are the comments sufficient and accurate? Are there any comments at all?

Does it produce compiler warnings?

Can you make it crash?

Is everything done in a way that fits together coherently with other features/modules?

45

http://wiki.postgresql.org/wiki/Reviewing_a_Patch
http://archives.postgresql.org/pgsql-hackers/2009-07/msg01103.php
http://developer.postgresql.org/pgdocs/postgres/source.html

18 BUILDING A LIFETIME CONTRIBUTOR

The work of transforming your summer students into lifetime contributors begins on the first
day. Actually, it begins even earlier with the preparation of your development community for
student participation and inclusion. In as many ways as possible, you should aim to make the
students full members of their community by the end of the program. Actively encourage
students to attend community meetings and retreats. Highlight their work within your
community. Part of being a mentor is being a cheerleader.

Say "thank you" often: People like to be thanked for their contributions—publicly and privately.
Creating an environment of appreciation makes students want to keep contributing.

Be gentle with criticism: Remember that you are cultivating a long-time contributor. Positive,
constructive comments are the most useful as well as the most pleasant to receive.

Don't airbrush your community: If you want a student to stick around, you might as well make
the experience as realistic as possible. Creating a bubble for the student takes a lot of effort.
When it inevitably bursts, they will be disillusioned.

Credit where due: Open source has something of a "reputation economy". Create a "CREDITS"
file in your code repository dedicated to identifying those people who have contributed to your
project, and make sure that they are mentioned by name in the release notes. As these
contributions are credited, mention this publicly on a mailing list or in a blog post. Remember to
also acknowledge contributions in public: when your student completes important project
milestones, announce their successes to your development community.

Solicit talks at conferences: Recommend that students present their work at open source
conferences. If you can, offer to co-present with them and help with designing their talks. If your
organization can offer travel support for the student, this is quite helpful. If you know people
who do work that your student is interested in, or that your student would be impressed to be
introduced to, take the time to make introductions.

Professional development: If appropriate, offer written professional recommendations to
students. Your help in career advice, job searches or referrals can be invaluable for a student.

Retreats and hackfests: If your organization is having a retreat or hosting a hackfest, invite
your students along! Find ways of integrating them into your group the same way you would any
other contributor.

Stay in contact: Open source organizations typically sustain themselves through the personal
connections developers have to each other. Many contributors consider each other friends, and
communicate non-technical information to each other. Remember though, that this is a student
and GSoC is their job, so when in doubt err on the side of communicating professionally—no
matter how informal the tone of your overall community.

Communicate early and communicate often! Try sending periodic emails to check in, pass on an
interesting link or share a photo. Social networks can be useful for maintaining contact without a
lot of overhead. Examples include: Identi.ca, Flickr, and GitHub. Use what works for you, and
don't feel pressured to get involved with a social network. The telephone is also a valuabe
resource; studies of open source communications have shown that VOIP technology is used with
surprising frequency in open source projects, and it is a very personal and friendly form of
communication.

46

Don't Be That Guy: Be socially and culturally sensitive. If you and your student don't share the
same cultural background, ask respectful questions so you get to know about the similarities and
differences a bit more. Also, make sure to maintain appropriate boundaries in your
communications. For example, a student calling in the middle of the night to ask for relationship
advice is not a pleasant situation for anyone; leave those conversations for their college friends.

47

ORG ADMIN

19. MAKING YOUR IDEAS PAGE

20. SELECTING STUDENTS AND MENTORS
21. ORG APPLICATION

22. MANAGING YOUR MENTORS

23. STUDENT - MENTOR FACILITATION
24. OTHER POSSIBLE ISSUES

25. END OF YEAR REPORT

48

19 MAKING YOUR IDEAS PAGE

It all begins with the "ldeas Page". This is where you compile a list of possible summer projects
for your organization. The Ideas Page is a major piece of your organization's application to
Google. It also serves as a recruiting and selection tool for students and mentors alike.

Depending on how your organization operates, the source of material for your ldeas Page may
come from an existing list of projects maintained by your community year-round, from potential
mentors as they are recruited, or from the org admin. Regardless of how it is generated, an
Ideas Page should have the following:

e Brief descriptions of projects that can be completed in about 12 weeks.

e For each project, a list of prerequisites, description of programming skills needed and
estimation of difficulty level.

e A list of potential mentors.

The best pages include links to more detailed descriptions and related materials for each project.
They might even include actual use cases!

Keep in mind that this page is often the first view of your organization by Google and potential
student applicants. A link to your bug tracker does not an Ideas Page make. Put your best foot
forward. In addition to a basic list, you might also consider providing links to relevant resources
for mentors and students, particular FAQ entries, the timeline, etc. You might include a section
on communication, giving specific advice on which mailing lists, channels and emails to use and
how to use them. If your organization puts together an application template for students, you
should include that on your page as well. Think of your Ideas Page as the GSoC portal to your
organization.

Pro Tip: Maintain an Ideas Page year-round to continually recruit new contributors and cultivate
community involvement.

49

20 - SELECTING STUDENTS AND
MENTORS

A key activity for org admins is setting up and supervising the process by which student
proposals are prioritized and matched with mentors. There are many good ways to do this.
There are also a few common ways to proceed that are not so good. In any case, understanding
how organizations commonly approach student and mentor selection can help to ensure a better
outcome from this critical step.

THE FORMAL PROCESS

Conceptually, the process of selecting students and mentors is simple. In practice, the process of
prioritizing proposals and assigning mentors can be difficult and contentious.

During the student application period, organizations prioritize the student proposals, discard
proposals unworthy of consideration and investigate proposals further. At some point, Google
tells the organization how many "slots" the organization will be allowed to fund. The highest-
priority projects at the close of the application period will be funded ("slotted") by Google. If
something causes a student to drop out later on, the organization's priority list is used to fill in a
replacement. Mentors must be assigned to all projects that the organization wants considered
for slotting, preferably as early in the process as possible.

Proposal volumes tend to be high, and the nature of the activity can lead to disagreements and
bruised egos. Make the process for deciding on projects clear early, and be consistent.

SLOT COUNT

Google asks your organization how many slots you want twice during the selection process; once
when your organization is accepted, and again shortly before slot allocation. The actual number
of slots you receive is mostly a function of the number of reasonable-quality applications your
organization receives during the proposal period, but there are limits.

Every accepted organization is allocated at least one slot. First-year organizations rarely get
more than five slots. No organization ever get more slots than they asked for.

There is no net advantage to getting as many slots as possible. Sure, more students get paid,
and the org gets paid a little more. However, accepting less-than-great applications has a huge
cost in time and grief. Google's process for choosing organizations includes the pass/fail ratio.
Poor ratios may endanger future participation in GSoC. If you must pad slot requests, pad them
only slightly, and be prepared to return slots to Google or to sister organizations when you find
you have extras.

If you discover that you haven't gotten the number of slots you were hoping for, Google's
program administrators will start a waiting list to move slots around amongst the organizations.

DEDUPLICATION

50

Students are allowed to submit proposals to many organizations each year. When organizations
have slotted their desired students, it is inevitably the case that a few students are sought by
more than one organization. Ideally, selecting a fit for these "duplicate" students will happen
before the end of the proposal period. At the end of this period, any remaining duplicates are
resolved online in a large IRC "deduplication" meeting. A representative of each organization with
a slotted duplicate student must attend the deduplication meeting; otherwise they will lose that
student.

The deduplication process involves interaction with peer open source organizations. It is critically
important that you are polite and cordial, and put the needs of the student first. Whenever
possible, student preferences should be honored. Keep in mind that you may have to work with
these organizations outside GSoC; generating ill will here is not worth it. Also keep in mind that
Google's program admins emphatically do not want to have to deal with hostility and conflict
here. Don't endanger your future participation in GSoC just because some other organization
wants some student as much as you do. Be nice and get out of the way.

MELANGE

Most organizations use the Google-sponsored open source Melange web tool to manage their
student selection and mentor matching. This software is the result of a complicated evolutionary
process, and has it's idiosyncracies.

Melange supports the basic activities of prioritizing applications and adjusting those priorities, of
assigning mentors to projects, and of collecting comments and ratings. Since Google uses
Melange for slot allocation, slotting and deduplication, all organizations need to interact with
Melange to some degree. It is a good idea to get things set up there early, so that issues that
arise with the software can be dealt with in a timely fashion.

ACQUIRING AND ASSIGNING MENTORS

Building a mentor pool and matching mentors with projects and students is one of the most
challenging tasks for the org admin. For many organizations, the mentor will be selected by
project when the ideas page is constructed. For others, mentors will be assigned once students
have been selected and matched to projects.

Look critically at mentor volunteers. Wanting the job is not a sufficient qualification. The mentor
should be well-known to the community, and known to be someone reasonable and collegial. The
best technical person is not necessarily the best mentor; look for teaching and...well..mentoring

skills.

Do not be afraid to reach out to folks in the organization who have not volunteered. The ideal
mentor for a project may not have heard of GSoC, or may not have considered herself a
candidate for mentoring. She may be flattered to be asked.

Make sure you have enough mentors, including quite a few spares. Folks who would be capable of
mentoring a variety of projects are especially welcome. Strongly consider having enough backup
or secondary mentors that every project has an alternate of some sort.

If you (or the mentor) are insecure about their qualifications having them join the project as a
back-up mentor is a great strategy to encourage future participation.

CHEATING AND PROPOSALS FROM OUTER SPACE

Use Melange's "ignore" feature to avoid spending time on proposals that were not tailored to
your project.

51

Occasionally a student does not understand the importance of attribution when drawing on
material from outside sources. Make sure she understands, early on, that plagiarism is not
tolerated. In blatant cases, a good response is to reject the proposal and consider informing the
administration at the academic institution the student is affiliated with. The article http://tes|-
ej.org/efl0/a2.html has some context to avoid surprises.

SELECTION STRATEGIES

Probably the best that can be done in suggesting selection strategies is to provide a few simple
ideas that organizations have used effectively in the past. Your organization will build its own
selection process over time; these ideas are just a starting point:

Get outsider help. Having a perspective from outside the "GSoC bubble" may help you see
student proposals in a new light. Sometimes, even folks from outside your organization can
provide useful review, especially if they have relevant technical expertise.

Use your mentors wisely. The mentors are in the best position to select students and
proposals for themselves. After all, it is they who will have to work with these students. Be
careful, though, of mentors who may be less experienced in the ways that GSoC students and
projects can go wrong. A few well-chosen war stories can be helpful in this situation.

Interact with the students during the proposal period. There should be no remaining
questions by the time students are slotted. Finding out that a student will not interact, or cannot
interact well, is absolutely crucial.

Don't be afraid to take charge. At the end of the day, the org admin is responsible for the
student and mentor selection decisions. If your org doesn't give you full veto power, or gives you
grief about executive decisions, consider stepping down. Sometimes somebody has to make the
final decision.

52

http://tesl-ej.org/ej10/a2.html

21 - ORG APPLICATION

Successful applications can come in many forms. You should approach the organization
application like you would a resume: this is the avenue through which you convince Google's
program administrators that you are qualified for the job of mentoring students.

The most important part of GSoC is providing the students an excellent experience over the
summer, and Google chooses organizations that they feel confident can do this based on their
application.

THE IDEAS PAGE

The ideas page is the most important part of the organization application. Please see the Ideas
Page chapter of this manual for more information.

PAST SUCCESS

One question Google consistently asks of an organization on the application is whether they have
participated in previous years, and if so, what their students' pass/fail ratio was. While pass/fail
ratio is but one indicator of the success of the previous year, it does weigh against other
components of the application.

NEW ORGS VS. RETURNING ORGS

Every year Google tries to make room for new organizations in the open source world who can
provide a different perspective or different opportunities to the students who participate in
GSoC. This can sometimes mean rejecting an org that has successfully participated in years past
to allow space for new organizations. Often these decisions are very difficult for us to make,
because they don't have much to do with the returning orgs' success in previous years.

53

WHAT NOT TO DO

Incomplete applications are common and hard for us to review. Not answering questions on the
form, not taking time with the quality of your Ideas Page, and not executing well on your
application can all be avenues to rejection. For example, don't submit an ideas page in the form
of a Google Wave our administrators don't have access to. Google doesn't have the time or
capacity to iterate with you on your application, unfortunately. Take the time to create a
thoughtful proposal.

JUST BECAUSE YOU DID EVERYTHING RIGHT...

...doesn't mean you'll be accepted. Every year Google receives many more applications for
organizations that want to participate in GSoC than it has capacity to accommodate. Some of
the decisions about which organizations are accepted and which aren't come down entirely to
space available in the program. Every year, Google offers an opportunity for rejected orgs to
receive feedback via email or IRC on what they could improve in their application for next year.
Sometimes the feedback is specific to the application, but sometimes the feedback is simply:
"We can't accommodate everyone; please try again next year."

A NOTE ON UMBRELLA ORGS

Google's program administrators actually look quite fondly on the umbrella organizations that
participate each year. It serves a dual purpose: it allows Google to accept more organizations in
the "space" of just one, and also gives an opportunity to accept a marginally-topical org by
putting it under the umbrella of a related org.

If your application is rejected, the following you may want to consider reaching out to an
accepted umbrella org that might be able to accommodate you.

54

22 MANAGING YOUR MENTORS

As an org admin, your primary responsibilities are managing the GSoC program administrative
requirements and helping your mentors effectively mentor. Below are some guidelines to help
you accomplish both objectives.

ESTABLISH A PRIVATE COMMUNICATION CHANNEL

It is important for mentors and org admins to have a communication channel that does not
involve students, so org admins can speak candidly with mentors. This usually takes the form of
a private mailing list or IRC channel, but any agreed-upon medium will work.

MANAGING ACROSS TIMEZONES

Org admins should have a list of mentors and students along with their timezones and preferred
contact information and availability. This is essential for umbrella organizations, which sometimes
have so many people spread across so many countries and time zones that it is impossible for
an org admin to keep track.

GSoC is often the first time people ever have to collaboratively work with others across many
timezones, so it is worth taking time in the beginning of the summer to figure out these details.
The fact that Daylight Savings Time is different depending on where people are complicates
things even more. Usually it is best to set times in UTC so that DST will not complicate things.
The World Clock website (http://www.timeanddate.com/worldclock/) is also a good resource for
determining the time in a certain location.

SETTING EXPECTATIONS

As an org admin, you need to rely on your mentors to manage the day-to-day activities related
to student projects. This means you should have a discussion before students are accepted—if
possible before you even apply for GSoC—about how your are going to handle some basic
logistical items that are essential for a smoothly running and effective program.

Set up-front guidelines on how students, projects and mentors are
selected

Occasionally, you'll find yourself with mentors for projects with no students and good project
ideas with no mentors. Figure out up front how you plan to evaluate and accept students,
projects and mentors. Make sure that your open source community concurs and the guidelines
are clearly posted in your community GSoC documentation. See the chapter on Selecting
Students and Mentors for details.

Determine a schedule and format for regular student project updates

Regular student progress reports to the open source project community are a great tool for
keeping your development community engaged and helpful to the students. It also helps provide
documentation if there is any doubt about a student's progress, and can help your community
identify problem areas for newcomers. Weekly reports via a blog or mailing list post are best; at
the very least ask for bi-weekly student reports to your community. Discuss report format and
submission timelines before the student application period opens and make sure your potential
students understand their reporting responsibilities.

55

Make sure the mentors understand they are primarily responsible for encouraging their students
to submit regular reports.

Establish up-front guidelines for mentor time involvement

How often should mentors meet with their students? What happens if a mentor needs to be
unavailable for several weeks during GSoC? Make sure the mentors understand expected time
commitments before they are assigned to a student, and how to arrange for backup if they need
to go missing for a bit.

Clearly communicate mentor GSoC administrative responsibilities

Mentors at the very minimum are responsible for submitting timely student evaluations at
midterms and finals. Make sure your mentor team is clear about when they need to submit
evaluations and what to do if they are not available to submit the evaluations.

Create a decision process for determining if a student should pass or fail

Unfortunately, at some point your organization is probably going to encounter a situation where
you need to determine if you should fail a student at midterms or finals. Talk to your mentors
before the GSoC program begins about criteria for passing and failing a student. Communicate
clearly who makes the final decision about whether a student pass or fails.

SORTING OUT CONFLICTS

At some point in your org admin career you are going to need to step in to help resolve conflicts.
Sometimes these are mentor-student conflicts, cross-project conflicts or mentor-mentor
conflicts; they may be something completely unexpected. Here are a few guidelines to help you
find the best-approach for resolution:

Get involved early, before things spiral out of control.

Discuss the conflict privately and separately with those involved.

Whenever possible don't take sides, but rather attempt to function as a mediator.
Remember that you are a senior representative of your open source community within the
larger GSoC program community.

o Ask for advice from the GSoC program staff.

If you've done a good job of setting expectations with your mentors, conflict resolution should be
fairly straight-forward.

56

23 STUDENT - MENTOR FACILITATION

The key to a successful GSoC experience is good communication. It is both a challenge and an
opportunity. You are often dealing with students who have never participated in open source or
collaborative development. Your mentors may be volunteering time they don't have. Neither
may have worked across the time and cultural spans commonly found in GSoC.

It is up to the org admin to stress communication strategies and expectations for both students
and mentors.

e Make sure your mentors set expectations for time commitment, meetings, reports and
code check-ins, and that these have been clearly communicated (if not collaboratively
developed) with their students.

e Make sure both mentors and students have established more than one channel of
communication with each other.

e Create internal contact groups for all your mentors and all your students. Use these email
lists for general statements and advice regarding who should be doing what and when, and
for asking, "Do you know where your student [or mentor] is?"

The number one reason why projects fail is poor communication. It is often the first sign of a
project in trouble. Poor communication may originate as much with the mentor as with the
student. A big part of your role as org admin is to lay out guidelines and advice at the start of
the program, and then to keep track of progress. The org admin should be aware of
communication problems early on. The only way to make sure you know what's going on is to
periodically check-in with individual students and mentors. The week before evaluations is a good
time to make contact and ensure there are no surprises coming. You should also stress to your
mentors and students that they should contact you whenever there is a communication
breakdown.

57

24 OTHER POSSIBLE ISSUES

Here are some things that might go wrong during the program, and how you can handle them.

Issue: Things just don't work out for a mentor.
Solution: Call for backup.

Sometimes "life" happens and things don't go according to plan. It is best to come up with a plan
at the beginning of the summer to deal with a mentor that suddenly don't have as much free
time as he thought he would, or even worse, a mentor that goes missing.

Having additional mentors assigned to each student is a very good idea, and helps with situations
where the primary mentor is not available. Google does not have a policy on additional mentors,
so this is something that an org admin needs to decide to have—the earlier the better.

Issue: Communication between participants breaks down.
Solution: Stage an intervention

First off, it is important to create a schedule for communication before coding begins. The org
admin and mentors should agree on a frequency of communication that is appropriate for
communicating with students and each other. This should be at least once per week, because it
is very easy to let a few weeks slip by and then realize that the timeline for the project is nearly
impossible to follow.

If, in spite of all your best efforts, you have to deal with a communication breakdown, you will
need to step in and restart communication yourself. Meet separately with the parties using the
most personal medium available, and then make sure they meet with each other. Reestablish a
regular schedule of communication, and find a way to monitor it.

Issue: Submissions from students are duplicated across organizations.
Solution: The deduplication process.

Deduplication can be a tricky process to navigate. Make sure it is clear to everyone involved
what the student's preference is, what your policy on choosing the duplicate students is, and
how strongly your org feels about each particular student's proposal.

58

25 END OF YEAR REPORT

Phew! You made it. There may have been some rough spots along the way, perhaps even some
failures, but you made it. Your work is almost done. It's time to take a look back and produce an
End-of-Year Report. Make it fun and it'll be painless. Heck, people might even read it! In fact,
Google will include your report in their code blog, which is great publicity for your organization.

The report should be written for a general audience, so include an introduction to your
organization and your main goals. You might mention how many years you've participated in
GSoC and the number of students you've mentored. Depending on how many projects you ran,
you should highlight what they were about, how much code was written, and code integration
plans. Were there any special events or face-to-face meetings over the summer? Any positive
surprises?

In the end, the report is all about the students. Be sure to mention any blogs that were
maintained by your students, and any public references to their work. Links to screenshots or
video demonstrations are quite effective. Including student quotes is a fun way to represent not
only their experience but also your organization, through the eyes of new contributors.

59

APPENDICES

26. THE QUICK GUIDE

27. THE HISTORY OF GSOC
28. ADDITIONAL RESOURCES
29. GLOSSARY

30. CREDITS

60

26. THE QUICK GUIDE

The process begins with proposing projects and selecting students over about a four week
period. This is followed by six to eight weeks of community bonding. The coding phase runs for
twelve weeks. A final one-week "pencils-down" phase wraps up the project.

e During the student selection phase the mentor will be responsible for helping find a fit
between project, student proposal and mentor. This will include defining the proposal
process, assisting in the evaluation of proposals, querying the students, providing them
feedback about their proposals and ultimately finding a student proposal to mentor.

e During the community bonding phase, the mentor and student will further define the
student's project and prepare for development. An important part of this phase, as the
name implies, is to get the student connected with both the mentoring organization and
the larger open source community.

e During the coding phase the student will be implementing the project. The mentor will be
providing advice not just on the technical aspects of development, but on issues related to
the interaction of the student's work with the organization. At midterm the mentor will
evaluate the student's progress to determine whether the student will continue with the
project and be issued a payment by Google.

e During the final phase the mentor will help the student submit a code sample to Google.
The mentor will also perform an evaluation of the student's work to determine whether
Google should issue a final payment.

QUICK TIPS ON EFFECTIVE MENTORING

The tips in this section are no substitute for reading this book. However, they may serve as an
introduction to the material herein.

Project Definition: An ideas page is the starting point for project definition. You should include
projects that you are interested in mentoring for the summer and that appeal to students and
to your organization.

Selecting Students: Students come with many motivations; try to understand why your
applicant is applying. It is better to give up a student slot than to select a student whose
performance is likely to be poor.

Communication: Engage with your student as early as possible. Integrate the student into your
community and its communication channels. Make sure that communication with your student is
frequent and regular.

Collaboration: Start by working with your student to set solid expectations and goals for the
project. Develop a detailed project plan, with deadlines and milestones. Be prepared for slippage,
and be willing to revise the plan as necessary, especially at midterm. Student learning is a
primary goal of GSoC, so try to provide a learning experience.

Evaluation: Keep your student evaluations objective; base them on your project plan. Keep in
mind that it is better to fail a student earlier rather than later—data shows that students doing
poorly at midterm rarely complete a GSoC project. Make sure your students hear your
evaluations: deliver praise in public, and criticism in private.

61

If you follow the above advice, and the rest of the advice given in this book, you have a good
chance to have a successful experience. Positive outcomes might include recruiting a permanent
developer to your community, developing a lifelong relationship with your student, and helping
the open source community grow and thrive.

62

27 THE HISTORY OF GSOC

Google Summer of Code began in 2005 as a complex experiment with a simple goal: helping
students find work related to their academic pursuits during their school holidays. Larry Page,
one of Google's co-founders, was pondering the age-old problem of scholastic backsliding:
students work hard and learn a great deal during the academic year, but without the right
employment opportunities and other pursuits outside of school, technical skills atrophy rather
than get honed and expanded. Larry wanted Google to help solve this problem.

The obvious solutions failed on geographical grounds. If a student wasn't in the optimal location,
obtaining a useful internship could be difficult or impossible. Finances were also a problem; many
internships are low paying or entirely unpaid, making it difficult for students to take the right job
while still paying the bills. Finally, even if a job was available in a technical field, it would not
necessarily introduce a student to the broad set of skills required to do software development
well. For example, creating a website for a local non-profit requires technical skill and would no
doubt be personally gratifying, but wouldn't necessarily require using an IDE, checking into source
control, or creating tests.

The perfect answer? Encourage students to participate in open source projects. Open source
development occurs online, solving the geography problem and giving students the chance to
work in a globally distributed team. Working on an open source project provides exposure to the
entire software development process and toolchain. Students enjoy the benefit of having a body
of reference work available to future employers and university admissions committees. Even
better, students get the chance to work on a codebase under active development rather than a
lab project or other single-use assignment.

The Google Summer of Code program provides a cash stipend from Google to students for work
with recognized open source communities. This stipend allows students to focus on their
development work rather than getting a job unrelated to their academic pursuits. A key piece of
the puzzle is finding projects that are excited to find new contributors and to provide helpers to
get new student contributors up to speed both technically and socially.

The first year 40 projects participated—400 students began the experiment.

In 2010, the sixth Google Summer of Code wrapped up with the best results yet. More than 89%
of the 1,026 student participants in the program successfully completed their projects. Best of
all, most of the organizations participating over the past six years reported that the program
helped them find new community members and active committers.

You can find more information about each year of Google Summer of Code on the program
statistics page of the GSoC Knowledge Base: http://code.google.com/p/google-summer-of-

code/wiki/ProgramStatistics

63

http://code.google.com/p/google-summer-of-code/wiki/ProgramStatistics

2 8 - ADDITIONAL RESOURCES

We've collected our favorite and most useful resources specific to GSoC here.

GENERAL RESOURCES

If your organization has participated in GSoC previously, chances are there are mailing lists
already set up and useful information in their archives; take a moment to look through them,
especially around the launch times (February to March), community bonding period (April) and
evaluation times (mid-July and end of August), for more details. The archives of the program
mailing lists, particularly the private mentors list (below), are also quite useful.

No matter what, you want to take a look at the Program Frequently Asked Questions each year
to make sure you have a good idea of the rules for the program for both yourself and your
students. There's a wealth of information included in the FAQs each year, even for experienced
participants. You can always find the latest information, including a link to the FAQs, at

http://code.google.com/soc/.

Additionally, these resources are quite helpful:

Program IRC Channel: Several knowledgeable folks hang out in #gsoc on Freenode and would be
happy to give you a pointer in the right direction.

Blog Posts: You can find material related to GSoC on the Google Open Source Blog at

http://google-opensource.blogspot.com/search/label/gsoc. Your project may have a blog or

newsletter where GSoC information was published in the past, as well.

Knowledge Base: If you're looking for advice for mentors or students, program promotional
materials, presentations about GSoC, etc., start with the knowledge base

http://code.google.com/p/google-summer-of-code/, particularly the wiki

http://code.google.com oogle-summer-of-code/wiki/WikiStart.

Mentor Summit Wiki: Google has traditionally held an annual mentor summit after GSoC wraps
up each year. During the summit, many great discussions are held on all sorts of topics regarding
the program and open source overall. Check out the summit wiki for session notes and to do
some further collaboration. Instructions for getting a login account on the wiki are available on
the private mentors list, or ping the program administrators for help. Anyone can view the wiki's

contents at http://gsoc-wiki.osuosl.org/.

List of Organizations: Each year, the community creates a list of categorized list of mentoring
organizations. You can find it linked from the Knowlege Base: Advice for Students page._
http://code.google.com/p/google-summer-of-code/wiki/AdviceforStudents

MAILING LISTS

There are four program mailing lists.

Announcement Only List: For announcements from Google's program administrators only. Used
infrequently.
http://groups.google.com/group/google-summer-of-code-announce

64

http://code.google.com/soc/
http://google-opensource.blogspot.com/search/label/gsoc
http://code.google.com/p/google-summer-of-code/
http://code.google.com/p/google-summer-of-code/wiki/WikiStart
http://gsoc-wiki.osuosl.org/
http://code.google.com/p/google-summer-of-code/wiki/AdviceforStudents
http://groups.google.com/group/google-summer-of-code-announce

Program Discussion List: Open subscription list for the program. General talk about the
program, light traffic except during the launch phase of the program each year. Typically this list
is not hugely relevant except just prior to the announcement of accepted organizations and
accepted students, as neither organizations nor students have access to the private lists until
acceptance unless they have previously participated in the program. It is always excellent for
you to stop by and encourage a newbie, though, so please don't totally ignore this list.
http://groups.google.com/group/google-summer-of-code-discuss

Students List: Private, invite-only list; students are subscribed to the list soon after they are
accepted into GSoC. Successful student participants from previous years and students currently
working on GSoC are subscribed to this list. Students who are dropped from the program are
also removed from the list. While this list is supposed to give students a private place to discuss
anything and everything so they aren't worried about looking silly elsewhere, more often than
not the list traffic is mostly discussions of tracking numbers for shipments, tax forms and
grumbles about t-shirt loss.

http://groups.google.com/group/google-summer-of-code-students-list

Mentors List: Private, invite-only list; mentors are subscribed to the list after their organization
is accepted into the program and they register as mentors in the GSoC online system. This list is
higher traffic at the beginning of the program and around the times of evaluations. Some great
advice can be found on this list and in the archives, but it can also be noisy at times.
http://groups.google.com/group/google-summer-of-code-mentors-list

BOOKS

Producing Open Source
Written by Karl Fogel. Excellent guide to Open Source development. Its available free online.
http://producingoss.com

Google Summer of Code Mentors Guide
http://www.flossmanuals.net

Google Summer of Code Students Guide
http://www.flossmanuals.net

ASSOCIATED PROJECTS

Teaching Open Source
http://teachingopensource.or
irc : freenode #teachingopensource

WHAT TO DO WHEN THE UNEXPECTED HAPPENS?

Contact your Organization Administrator: He or she can help you figure out what to do next
or contact Google for more help.

Talk to Google's Program Administrators: They have plenty of experience with all the corner
cases and strange issues that can arise during GSoC. Email ospoadmin@gmail.com for help if you
can't find one of the program admins in #gsoc on Freenode.

65

http://groups.google.com/group/google-summer-of-code-discuss
http://groups.google.com/group/google-summer-of-code-students-list
http://groups.google.com/group/google-summer-of-code-mentors-list
http://producingoss.com/
http:/
http://teachingopensource.org
mailto:ospoadmin@gmail.com

29 . GLOSSARY

+1

The shortest way in the geek world to say "l agree with this" or "This is a great idea". It is often
used when others have already fleshed out the details and a consensus of how many
agree/disagree with the sentiment. It is worth noting to your students if your project uses this as
a voting signal so they do not accidentally comment on issues when, as newbies, they should be
observing rather than commenting/voting.

-1
The opposite of +1. Often accompanied by an explanation why, if you are lucky.

COMMITTER

An individual who has special rights in an open source project. While the scope of this term varies
by project, the general idea is that this individual is able to check in source code to the project's
main repository.

COMMUNITY BONDING PERIOD

The period of time between when accepted students are announced for a particular year of
GSoC and the time these students are expected to start coding. This time is an excellent one to
introduce students to the community, get them on the right mailing lists, etc. See the "Mind the
Gap" section for more details.

DVCS

Distributed version control system. A version control system that does not require talking to a
centralized server.

FLOSS

Free/Libre Open Source Software. Likely the most inclusive acronym to describe the software
produced for GSoC.

GSOC

Google Summer of Code

IDE

Integrated Development Environment

IM

Instant Messenger

IRC

66

Internet Relay Chat

ISP

Internet Service Provider

JFDI

Just Fabulously Do It. Use your imagination. Ask for forgiveness, not for permission. :)

MENTOR

Someone who helps a student with their project proposal. See the What is GSoC section for
more details.

ORGANIZATION

An open source, free software or technology-related project that mentors students for Google
Summer of Code. Also known as a mentoring organization.

ORGANIZATION ADMIN (ORG ADMIN)

Cat herders for each open source project participating in the program. Often abbreviated to org
admin. See the What is GSoC section for more details.

PROGRAM ADMINISTRATOR

Google employees who run the program. See the What is GSoC section for more details.

RTFM

Read The FLOSS Manual ;)

SECONDARY MENTOR

A person who helps out a student's assigned mentor. At time of writing this manual, the GSoC
online system only allows one mentor to be officially assigned to a student proposal, as one
person must be responsible for submitting evaluations, etc. However, it is quite common to have
multiple mentors for one student.

SMOP

Simple Matter of Programming

SUMMER

Not so much a season as a state of being. While the program is run during the Northern
Hemisphere's Spring and Summer, the "Summer" in Google Summer of Code is actually a play on
the "Summer of Love.

TDD

67

Test Driven Development

USE CASE

A use case describes what a user can do with a particular software system.
http://en.wikipedia.org/wiki/Use_case

WATERFALL MODEL

A sequential software development process.

68

http://en.wikipedia.org/wiki/Use_case

30 - CREDITS

Note : "Google Summer of Code" (GSoC) is a trademark of Google Inc.

All chapters copyright of the authors (see below). Unless otherwise stated all chapters in this
manual licensed with Creative Commons SA-BY 3.0

The following is attribution information for 2010.

What Is GSoC?

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

Why GSoC Matters

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

About This Manual

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

booki - Booki Book 2010

What Makes a Good Mentor

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

Defining a Project

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

Selecting a Student

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

Community Basics

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

Best Practices
© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

Warning Signs

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

Open Source Culture

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
AlexanderPico - Alex Pico 2010

adamhyde - adam hyde 2010

Mind the Gap

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
BartMassey - Bart Massey 2010

adamhyde - adam hyde 2010

Setting Expectations

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
BartMassey - Bart Massey 2010

adamhyde - adam hyde 2010

Workflow

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
BartMassey - Bart Massey 2010

adamhyde - adam hyde 2010

Managing the Plan

© Google Inc And The Contributors 2009 / 2010
Modifications:

BartMassey - Bart Massey 2010

Evaluations

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
BartMassey - Bart Massey 2010

adamhyde - adam hyde 2010

Upstream Integration

© Google Inc And The Contributors 2009 / 2010
Modifications:

dukeleto - Jonathan "Duke" Leto 2010
adamhyde - adam hyde 2010

Building a Lifetime Contributor

© Google Inc And The Contributors 2009 / 2010
Modifications:

70

BartMassey - Bart Massey 2010

Making Your |deas Page

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

AlexanderPico - Alex Pico 2010

dukeleto - Jonathan "Duke" Leto 2010
BartMassey - Bart Massey 2010

selenamarie - Selena Deckelmann 2010

Selecting Projects and Mentors

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

BartMassey - Bart Massey 2010

jenred - Jennifer Redman 2010

selenamarie - Selena Deckelmann 2010
malveeka - Malveeka Tewari 2010

Org Application

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

carols - Carol Smith 2010

AlexanderPico - Alex Pico 2010

BartMassey - Bart Massey 2010

selenamarie - Selena Deckelmann 2010

Managing the Mentors

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

dukeleto - Jonathan "Duke" Leto 2010

jenred - Jennifer Redman 2010

BartMassey - Bart Massey 2010

AlexanderPico - Alex Pico 2010

Student - Mentor Facilitation

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

AlexanderPico - Alex Pico 2010

BartMassey - Bart Massey 2010

Other Possible Issues

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

dukeleto - Jonathan "Duke" Leto 2010

carols - Carol Smith 2010

AlexanderPico - Alex Pico 2010

selenamarie - Selena Deckelmann 2010
BartMassey - Bart Massey 2010

End of Year Report
© Google Inc And The Contributors 2009 / 2010
Modifications:

U

adamhyde - adam hyde 2010
AlexanderPico - Alex Pico 2010
BartMassey - Bart Massey 2010

The Quick Guide

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

BartMassey - Bart Massey 2010

dukeleto - Jonathan "Duke" Leto 2010

History of GSoC

© Google Inc And The Contributors 2009 / 2010
Modifications:

BartMassey - Bart Massey 2010

adamhyde - adam hyde 2010

dukeleto - Jonathan "Duke" Leto 2010

Additional Resources

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

Glossary

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

Credits

© Google Inc And The Contributors 2009 / 2010
Modifications:

adamhyde - adam hyde 2010

The below is legacy information for attribution prior to 2010.

AUTHORS

THE QUICK GUIDE

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Anne Gentle 2009

Bart Massey 2009

James Crook 2009

Jonathan Leto 2009

ABOUT THIS MANUAL

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Anne Gentle 2009

Jennifer Redman 2009

Jonathan Leto 2009

Leslie Hawthorn 2009

Olly Betts 2009

72

selena deckelmann 2009

COMMUNITY BASICS

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Jennifer Redman 2009

Jonathan Leto 2009

Olly Betts 2009

selena deckelmann 2009

CREDITS

© Google Inc And The Contributors 2006
Modifications:

adam hyde 2006, 2007, 2009

EVALUATIONS

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Bart Massey 2009

Leslie Hawthorn 2009

Olly Betts 2009

selena deckelmann 2009

OPEN SOURCE CULTURE

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Jennifer Redman 2009

Jonathan Leto 2009

Leslie Hawthorn 2009

Olly Betts 2009

selena deckelmann 2009

SELECTING A STUDENT

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Bart Massey 2009, 2010

Leslie Hawthorn 2009

selena deckelmann 2009

GLOSSARY

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Jonathan Leto 2009

Leslie Hawthorn 2009

HISTORY OF GSoC

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

73

Alexander Pico 2009
Jonathan Leto 2009
Leslie Hawthorn 2009
Olly Betts 2010

WHAT IS GSoC?

© Google Inc And The Contributors 2006
Modifications:

adam hyde 2006, 2007, 2009
Alexander Pico 2009

Anne Gentle 2009

Jonathan Leto 2009

Leslie Hawthorn 2009

Olly Betts 2009, 2010

William Abernathy 2009

BUILDING A LIFETIME CONTRIBUTOR

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Bart Massey 2009

Jennifer Redman 2009

Leslie Hawthorn 2009

selena deckelmann 2009

MIND THE GAP

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Jennifer Redman 2009

Jonathan Leto 2009

Leslie Hawthorn 2009

Olly Betts 2009

selena deckelmann 2009

MANAGING THE PLAN

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Bart Massey 2009

Jennifer Redman 2009

Leslie Hawthorn 2009

selena deckelmann 2009

ADDITIONAL RESOURCES

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Jennifer Redman 2009

Leslie Hawthorn 2009

selena deckelmann 2009

WHAT MAKES A GOOD MENTOR
© Google Inc And The Contributors 2009

74

Modifications:

adam hyde 2009
Alexander Pico 2009
Bart Massey 2010
James Crook 2009
Jonathan Leto 2009
Olly Betts 2009

DEFINING A PROJECT

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Bart Massey 2009

Jennifer Redman 2009

selena deckelmann 2009

William Abernathy 2009

SETTING EXPECTATIONS
© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009
Alexander Pico 2009
Anne Gentle 2009

Bart Massey 2009
Jennifer Redman 2009
Jonathan Leto 2009

Olly Betts 2009

selena deckelmann 2009

BEST PRACTICES

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Jennifer Redman 2009

Olly Betts 2009

selena deckelmann 2009

WHY GSoC MATTERS

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Jennifer Redman 2009

Jonathan Leto 2009

UPSTREAM INTEGRATION

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Bart Massey 2009

Jonathan Leto 2009

Olly Betts 2009

selena deckelmann 2009

WARNING SIGNS

75

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Jennifer Redman 2009

Jonathan Leto 2009

Olly Betts 2009

WORKFLOW

© Google Inc And The Contributors 2009
Modifications:

adam hyde 2009

Alexander Pico 2009

Jonathan Leto 2009

Olly Betts 2009

selena deckelmann 2009

76

	GSOC MENTORING
	1. ABOUT THIS MANUAL
	HOW TO CONTRIBUTE TO THIS MANUAL
	ABOUT THE AUTHORS
	2009 PARTICPANTS
	FACILITATION (2009 & 2010)
	THE PLATFORM

	2. WHAT IS GOOGLE SUMMER OF CODE?
	GOALS OF THE PROGRAM
	A BRIEF HISTORY OF GOOGLE SUMMER OF CODE
	PARTICIPANT ROLES
	PROGRAM STRUCTURE

	3. WHY GSOC MATTERS
	4. NOTES FOR FIRST YEAR ORGANIZATIONS
	5. WHAT MAKES A GOOD MENTOR?
	BE PREPARED TO SEEK HELP
	BACKUP MENTORS
	WHAT TO EXPECT FROM UNDER-MENTORING

	6. DEFINING A PROJECT
	7. SELECTING A STUDENT
	UNDERSTANDING STUDENT MOTIVATIONS
	SELECTING A STUDENT
	FINDING A MATCH
	GOOGLE'S SELECTION PROCESS
	STARTING AT THE BEGINNING

	8. COMMUNITY BASICS
	SET THE TONE
	ENCOURAGE QUESTIONS
	CRITICISM HAPPENS

	9. BEST PRACTICES
	GIVING AND RECEIVING CRITICISM

	10. WARNING SIGNS
	"ACTIONS SPEAK LOUDER THAN WORDS"

	11. OPEN SOURCE CULTURE
	OPENNESS AND SHARING
	REMOTE COMMUNICATION
	ABBREVIATIONS AND SLANG
	VOLUNTEERISM AND GIFT ECONOMIES

	12. MIND THE GAP
	13. SETTING EXPECTATIONS
	DEFINING SUCCESS
	MANAGING OUTPUT

	14. WORKFLOW
	15. MANAGING THE PLAN
	CREATING A STRATEGIC PLAN
	FOLLOWING THE PLAN
	DELIVERING FEEDBACK

	16. EVALUATIONS
	THEY WON'T KNOW UNLESS YOU TELL THEM
	WHEN IN DOUBT, FAIL THE STUDENT EARLY
	IT'S NOT IMPOSSIBLE TO TURN THINGS AROUND
	MENTOR, HEAL THYSELF

	17. UPSTREAM INTEGRATION
	RECRUIT COMMITTERS EARLY
	GET THE CODE
	DIVIDING UP PATCHES
	PATCH REVIEW

	18. BUILDING A LIFETIME CONTRIBUTOR
	19. MAKING YOUR IDEAS PAGE
	20. SELECTING STUDENTS AND MENTORS
	THE FORMAL PROCESS
	SLOT COUNT
	DEDUPLICATION
	MELANGE
	ACQUIRING AND ASSIGNING MENTORS
	CHEATING AND PROPOSALS FROM OUTER SPACE
	SELECTION STRATEGIES

	21. ORG APPLICATION
	THE IDEAS PAGE
	PAST SUCCESS
	NEW ORGS VS. RETURNING ORGS
	WHAT NOT TO DO
	JUST BECAUSE YOU DID EVERYTHING RIGHT...
	A NOTE ON UMBRELLA ORGS

	22. MANAGING YOUR MENTORS
	ESTABLISH A PRIVATE COMMUNICATION CHANNEL
	MANAGING ACROSS TIMEZONES
	SETTING EXPECTATIONS
	SORTING OUT CONFLICTS

	23. STUDENT - MENTOR FACILITATION
	24. OTHER POSSIBLE ISSUES
	25. END OF YEAR REPORT
	26. THE QUICK GUIDE
	QUICK TIPS ON EFFECTIVE MENTORING

	27. THE HISTORY OF GSOC
	28. ADDITIONAL RESOURCES
	GENERAL RESOURCES
	MAILING LISTS
	BOOKS
	ASSOCIATED PROJECTS
	WHAT TO DO WHEN THE UNEXPECTED HAPPENS?

	29. GLOSSARY
	+1
	-1
	COMMITTER
	COMMUNITY BONDING PERIOD
	DVCS
	FLOSS
	GSOC
	IDE
	IM
	IRC
	ISP
	JFDI
	MENTOR
	ORGANIZATION
	ORGANIZATION ADMIN (ORG ADMIN)
	PROGRAM ADMINISTRATOR
	RTFM
	SECONDARY MENTOR
	SMOP
	SUMMER
	TDD
	USE CASE
	WATERFALL MODEL

	30. CREDITS
	AUTHORS

