
AN E-BOOK
REVOLUTION

1

Published : 2011-07-08
License : None

INTRODUCTION
1. Reading And Leading With One Laptop Per Child

2

1. READING AND LEADING WITH ONE

LAPTOP PER CHILD
"The Readers are the Leaders"

 The Author's Mother

George Pal's movie The Time Machine has spoken to me ever since
I saw it at the local YMCA as a child. In it Rod Taylor the Time
Traveller travels hundreds of thousands of years into the future to
discover that humanity has split into two branches: the beautiful,
passive Eloi, and the repulsive, cannibalistic Morlocks who live
underground and use the Eloi as cattle. It is strongly implied that the Eloi achieved their
degraded state because they neglected reading and did not take care of their books. At the end
of the movie the Time Traveller returns to the Eloi with a gift that he will use to help them
regain their humanity: three books. We are not told which ones.

If this vision of the future is less likely now than it seemed to me when I first saw the film, much
of the credit is due to volunteers that are working to preserve books in the public domain in
electronic form, and others creating new works with Creative Commons licenses that allow free
distribution.

Of course having books in electronic format would be of no use if there was no way to read
them. In The Time Machine the Eloi had magic talking rings that would tell them stories when
they were spun on a special table. Like much of today's technology it gave a great demo but
was closed, proprietary, and ultimately impractical. Today we have something better than magic
talking rings: low cost computers from the One Laptop Per Child project running the Sugar
operating environment. If the Time Traveller had chosen not to help the Eloi regain their
humanity but to prevent them from losing it in the first place I am convinced he could do no
better than to become involved in this project.1

When I proposed writing this book specifically about creating and using e-books with Sugar
several people suggested that I would do better to write a general book on e-books and only
mention Sugar as one e-book reading platform among many. They had a reasonable point.
Much of the material in this book will be of interest to those with Kindles, Nooks, iPads, cheap
tablets running Android, and any other kind of computer that can read an e-book. However, I
make no apology for focusing attention on the Sugar platform. It is in my opinion poised to
become the best available e-book reading platform. Significantly, it is an outstanding platform
for free e-books.

If your knowledge of e-books comes from products like the Kindle, the Nook, or even the iPad
you could be forgiven for thinking that e-books don't have much to offer. For instance, you may
have thought that e-books would be less expensive than regular books, only to find out that
publishers want almost as much money for a current e-book as they do for a hardbound book,
and unlike a normal book an e-book cannot be loaned out or resold. 2

You may have heard that Amazon already sells more Kindle books than it does bound and
printed books. As revolutionary as that is, there is a second e-book revolution in progress, with
e-books that are in the public domain or that are licensed for free downloading, and Sugar can be
a big part of that revolution. Consider the following:

3

There are over about two million free e-books available, including some of the best ever
written.
Anyone can easily make his own e-book and publish it.
If you have a bound and printed book and a digital camera, you can make an e-book from
that book. If the book is in the public domain you can even publish it.
If you don't have any books to convert to e-books you can volunteer to proofread other
people's e-books on the Distributed Proofreaders website.
With web-based tools like Booki you can collaborate on writing a book with people you've
never met in person. The book can be published as a website, in e-book format, or even
sent to a print-on-demand service to create bound and printed copies.
A new standard, OPDS, makes it possible to create electronic catalogs of e-books. Many
such catalogs are already in existence, and you can set up a catalog like that for your own
e-book collection.
There are applications for Sugar and the XO laptop to search catalogs of free e-books and
download them to your computer.
The reading activities for Sugar support every important e-book format, and have features
that go beyond what products like the Kindle support.
You don't need an XO laptop to run Sugar. With Sugar on a Stick you can install Sugar on a
bootable USB thumb drive and take it and your e-book library wherever you go. You can
use this thumb drive to run Sugar on most PCs and Macs.

Access to free e-books can change how we do education. If the authors of the History book
your school uses give Thomas Jefferson less credit than he deserves, or praise Thomas Paine's
Common Sense but neglect to mention his controversial later writings you can easily find material
to remedy this deficiency. Are you putting on a school play? There are many you could put on
without paying royalties, free to download. Do you teach French? Project Gutenberg has the
works of French authors in their original language. Do you have dyslexic students? The e-book
reader for Project Gutenberg texts can read texts aloud with the word being spoken highlighted.
The Internet Archive has free sheet music, as well as illustrated books on drawing for art
classes.

If the only source of information on the Internet your students know about is Wikipedia, this
book will help you fix that.

The benefits of free e-books can become even greater when you learn to make them yourself.
Indeed, the invention of the e-book changes forever what it means to be a publisher. Our
descendants will not have to make do with three well chosen volumes. Instead, they will have
access to millions!

4

E-BOOKS ON THE XO LAPTOP

The design of the XO laptop shows the importance the project gives to e-book reading. The XO
has a screen that can swivel 180 degrees to turn the laptop into a tablet, and the screen
orientation can be rotated to display a full page of text. With the back light turned off the
student can even read his e-books by sunlight.

Here is the XO laptop with the screen folded into the tablet orientation for reading e-books:

5

THE PURPOSE OF THIS BOOK

As I was writing this book I realized time and again that I was not just writing about something
that is, but something that is in the process of becoming. For instance, there are millions of free
e-books available, but more children's books, recent books, and books in languages other than
English are needed. There are Activities for Sugar that make it very easy to find and download
e-books, but not every available e-book can be had that way yet. The Sugar platform offers
excellent Activities for reading and sharing e-books, but it can still be improved. There is
excellent software under development for publishing your own e-books, and there is excellent
software being developed for collaborating on the web to create e-books. If you're the kind of
person who likes to get in on the ground floor, you'll find this book a guide to where you can do
so.

If you're the kind of person who has to make the best of what's available, this book is for you
too.

This book is about using Sugar, the XO laptop and free e-books to their full potential. It will
describe the strengths and weaknesses of the different e-book formats, where to find free e-
books, the Activities available for reading them and their features and functions, and finally how
to create and publish your own free e-books.

The contributors to this book have extensive experience working with e-books. The main author
wrote several Activities for finding and reading e-books on the XO. For this book he designed
and built his own book scanner, created e-books from several hardbound books, donated books
to the Internet Archive, Project Gutenberg, and Project Gutenberg Canada. He has published
several books on the Kindle Store, and has created some of the software described in this book.
The other contributors are involved with the Rural Design Collective, an organization that has
done work for the Internet Archive, including a method of distributing the Children's Book
Collection to computers that cannot connect to the Internet.

FORMATS FOR THIS BOOK

This book is available in several formats:

The first is as a website at http://en.flossmanuals.net/. The world of e-books and children's
education does not stand still, so this book will be updated from time to time. The website will
contain the latest version of the book, because the website was used to write the book.

Versions in Full Color PDF, EPUB, and Kindle MOBI format may be downloaded for free from the
Internet Archive at http://archive.org.

The very same Kindle file may be purchased from the Amazon Kindle Store. The price will be
the lowest that Amazon allows. The advantage of buying the book from Amazon versus
downloading it from the Internet Archive will be convenience.

The Rural Design Collective produced a really beautiful bound and printed version of this book as
a summer project. Fifty copies were made, and they featured front and back cover art by
Oceana Rain Fields (who also did the art at the top of each chapter in the website).

There are no immediate plans to publish more of these, but if you want to see what you missed
you can check out

http://sixes.net/rdcHQ/ebook-enlightenment-pdfs-published/.

The very best way to read this book is in EPUB format from the Internet Archive, using the Read
program on an XO laptop. It just doesn't get better than that!

6

http://en.flossmanuals.net
http://archive.org
http://sixes.net/rdcHQ/ebook-enlightenment-pdfs-published/

1. Given the choice between helping Weena regain her humanity and volunteering to help
OLPC many of us would have made the same choice George did.^

2. Actually, the publishers of e-books, not Amazon, are the source of this problem. Amazon
allows publishers to set prices and also allows them to restrict how their e-books may be
used. Amazon is perfectly willing to publish low priced e-books with no restrictions, and has
thousands like that available. It is established authors and publishers that want these
restrictions, and Amazon offers them to get best sellers on their platform.^

FINDING E-BOOKS
2. Sources For Free E-Books
3. Free E-Book Formats
4. Sugar Activities For Finding E-Books

7

2. SOURCES FOR FREE E-BOOKS

PROJECT GUTENBERG

Project Gutenberg is the oldest source of free e-books and still
one of the best. It is mostly known for its Plain Text files but
other formats are available as well. There are three Project
Gutenberg sites that you can get books from:

Project Gutenberg at http://www.gutenberg.org/wiki/Main_Page

Project Gutenberg Australia at http://gutenberg.net.au/

Project Gutenberg Canada at http://www.gutenberg.ca/

There are other affiliated sites but any books they provide should also be available at the main
site.

The reason Project Gutenberg Australia is different is that copyright laws in Australia are
different than in the United States so they can host titles that the United States cannot. (There
are also some titles that are in the public domain in the U.S. but still under copyright in
Australia).

The website explains, "As a general rule the works of authors who died before 1955 are in the
public domain in Australia. Works by George Orwell (died 1950), Virginia Woolf (died 1941), and
James Joyce (died 1941), just to name a few authors, are in the public domain in Australia.

"Of course, works which are in the public domain in Australia may remain copyrighted in other
Countries, even for several decades. People may not download, or read online, such works if
they are in a country where they are still under copyright. That still leaves a lot of readers out
there to enjoy etexts of some of the greatest literary works of the twentieth century."

Project Gutenberg Canada is in a similar situation to its Australian sister site. Canadian
copyright law puts books in the public domain 50 years after the author's death. Australia used
to do that, but now is a life + 70 country, except for books where the author died before 1955.
Canada is under some pressure to change its copyright laws, but for now Canada can host more
recent books than Australia can.

This is a typical book listing from the main website showing the formats that are available for
the Jules Verne book Les Cinq Cents Millions De La Bégum (The Begum's Fortune):

8

http://www.gutenberg.org/wiki/Main_Page
http://gutenberg.net.au
http://www.gutenberg.ca

Encoding is the character set used for the Plain Text file. Nearly all books have a us-ascii
version. Books in languages other than English will in addition have an iso-8859 version or a
UTF-8 version. These encodings allow for things like accents and other diacritical marks. As the
site explains:

"Plain text files often come in more than one encoding. us-ascii encoding is supported on virtually
any device but has a very limited choice of characters. It is not suitable for any language except
English. iso-8859-1 (also known as Latin1) is supported on any Windows-class machine or better.
It is suitable for most Western European languages. utf-8 is suitable for any language but needs
a display program that knows utf-8 and you have to install appropriate fonts for the language
you are trying to display."

The HTML version is suitable for reading online and may or may not have illustrations. The
EPUB version will be generated from the HTML version. EPUBs from Project Gutenberg may or
may not have illustrations, but they are some of the highest quality EPUBs available.

Project Gutenberg has many titles to offer to children old enough to appreciate books without
pictures. These include all the Oz books, Sherlock Holmes, all of Jules Verne, Alice in Wonderland,
classic science fiction from E.E. Smith, Stanley G. Weinbaum, and many others, plus juvenile
novels like the Tom Swift books, The Girl Aviators series, and much more.

Students and teachers of History will find that Project Gutenberg has much to offer as well.

THE INTERNET ARCHIVE

The Internet Archive is a site devoted to preserving the public domain. In addition to books
they have movies, music, and even some software that is in the public domain. There are over
a million and a half e-books available from this site. The URL for e-books is:

http://www.archive.org/details/texts

Internet Archive books are created by scanning page images, including the covers of the books.
 When you read one of them the visual experience is very much like reading the original book.
 The website lets you read the book online in "flipbook" format, which is very much like paging
through the original book:

9

http://www.archive.org/details/texts

The formats offered by IA are PDF, Black and White PDF (for some of the more colorful books,
to create a smaller file), DjVu, and EPUB. DjVu offers color pages with smaller file sizes than
either of the PDF formats. EPUB files from IA are at the moment not the best quality, but over
time this should improve. Right now they combine badly proofread text with only a few
illustrations.

There is a Children's Book Collection at the Internet Archive at this URL:

http://www.archive.org/details/iacl

Quite a few of the books are from the 1800's and more of interest to children's book collectors
than actual children, but you can find the Oz books, books by Edgar Rice Burroughs (Tarzan), Jules
Verne, Andrew Lang's Fairy Books, The Wind In The Willows, etc. all with illustrations.

The Internet Archive is one of the few places you can download public domain comic books,
although there aren't many and most are in the .cbr format instead of .cbz.

The simplest way to find the books you want from the Internet Archive is to use the Book
Server page at this URL:

http://www.archive.org/bookserver

Just type in author, title or subject words in the text field on this page and you'll get a list of all
the titles available and the formats they can be had in:

10

http://www.archive.org/details/iacl
http://www.archive.org/bookserver

This page will show results not just for the Internet Archive but also for Feedbooks and other
sources.

FEEDBOOKS

Feedbooks offers public domain titles from Project Gutenberg converted from Plain Text to
PDF format. This gives them nicer fonts, fancy chapter headings, bold and italicized text where
needed, and introductory material usually from Wikipedia. They also have some original books
of their own for download. They are located at:

http://www.feedbooks.com/

THE RURAL DESIGN COLLECTIVE

The Rural Design Collective (@rdcHQ) is a not-for-profit professional mentoring organization
which furthers the education and experience of residents of rural Southern Coastal Oregon who
are interested in working with web and/or media technology by involving them in real
development projects. They devote a portion of their program to continued exploration of
technology surrounding digital books. In 2009, they built an interface for approximately 2000
digital books using a subset from the Internet Archive Children's Library. The Internet Archive
Bookreader was modified to view the books online in a single page format to enhance
functionality on OLPC XO gen-1 computers.

A web demonstration of that project is available at: http://www.ruraldesigncollective.org/lab/ui/

11

http://www.feedbooks.com
http://twitter.com/rdcHQ
http://www.ruraldesigncollective.org/lab/ui/

The books are only available in "flipbook" format via the web interface. Strictly speaking, RDC is
not so much a source of free e-books as a handy way to browse through the Children's Book
Collection at the Internet Archive. Once the child finds the book he wants he can download it
using the Get Books or Get Internet Archive Books Activities.

12

http://www.ruraldesigncollective.org/lab/docs/

MANYBOOKS.NET

ManyBooks.net is located at this URL:

http://manybooks.net/

They offer over 27,000 titles, mostly converted from Project Gutenberg Plain Text files. They
offer several formats for each title, including PDF, large print PDF, EPUB, Plain Text and RTF.
Their PDFs are different from Feedbooks PDFs because they generally include a book cover
image (but no other illustrations) at the beginning of the document.

THE BAEN FREE LIBRARY

The Baen Free Library is different from the rest of these sites because it deals with titles that
are still copyrighted. Baen Books gives away free e-book downloads of some of their titles,
with the author's permission, to encourage sales of the printed books they publish.

13

http://manybooks.net

Baen publishes science fiction titles, including books by James P. Hogan, Larry Niven, Jerry
Pournelle, and many other well known authors. They offer the books in several formats,
including EPUB. Older versions of Sugar do not support the EPUB format, but they can use Rich
Text Format. You can load this into your favorite word processor, but a word processor is not
an e-book reader. Your best options with this format is to use Open Office to convert the RTF
to a PDF, or to use an e-book reader like Read Etexts that can convert an RTF to a Plain Text
file.

Most of these books are suitable for younger readers and are much more current than anything
in the public domain.

MUNSEY'S

Lots of books and stories in EPUB and PDF formats, mostly from pulp magazines, and mostly in
English. Some are suitable for children, a few are not:

http://www.munseys.com/site/home

FREE LITERATURE

This site contains links to over 600 sites that are sources of free e-books in many languages.

http://www.freeliterature.org/

14

http://www.munseys.com/site/home
http://www.freeliterature.org

3. FREE E-BOOK FORMATS

For the purposes of this book I consider an e-book to be in a file
that can be downloaded to the computer and read when the
computer is not connected to the network. There are many
websites where you can read a book online, but I don't consider
websites to be e-books.

I'm also going to limit the list to formats that can be read on a
computer without dealing with Digital Rights Management. Free e-
books are likely to be the only ones without DRM.

PLAIN TEXT

This is the oldest format and the simplest. A plain text file just contains letters, numbers,
punctuation, and spaces. There may be a newline character (the character you make when you
press Enter to start a new line) at the end of each line, or newlines may be just used to
separate paragraphs. There are no changes in font, no bold, no italics, no underlines. By
convention a word is considered to be bold if it has asterisks (*) before and after it. A word is
considered italicized if it has underline characters (_) before and after.

Advantages

Plain text produces the smallest files by far. It is the simplest format to create a reader for, so
it is supported on the most devices. While all the text needs to be displayed in the same font,
you can make the font as large or small as you need it to be and the text will wrap itself to fit in
the available space, making it a good choice for readers that can benefit from a larger font.
Because it is so simple to support in a reader program the program might have features that
are not supported for other formats. In the case of Sugar, plain text files are the only ones (so
far) that have support for text to speech with highlighting.

15

If you make your own e-book using the methods described in this book chances are good your
book will at some point be a Plain Text file, which you will want to proofread before creating an
EPUB or MOBI out of it. For this reason it is useful to have Activities that work with Plain Text.

Disadvantages

No illustrations. This makes it a poor format for children's books.

16

PORTABLE DOCUMENT FORMAT (PDF)

This is one of the most popular formats. It is a compressed version of the PostScript language
used to format pages for printers. What you see on the screen looks exactly like the page
printed using the original PostScript.

Advantages

This is an attractive format that can support having illustrations.

Disadvantages

A PDF is designed to show exactly what a printed page will look like, and not every printed page
works on the screen. Multiple columns, tiny fonts and landscape page orientation can make a
PDF unusable on the screen.

Another issue with a PDF is that the text cannot be reformatted. You can zoom in on a PDF but
unlike plain text you can't make the text larger and have it wrap to fit on the page.

17

IMAGE CONTAINER PDF'S

Image Container PDF is a term used by the Internet Archive to describe a PDF that is
composed entirely of images of book pages. This format gives the reader an experience as
much as possible like reading the original book. PDFs created this way can have a "text layer"
created by Optical Character Recognition, making these e-books searchable.

Advantages

An excellent format for children's books, which often have pictures and other decorations on
every page.

Disadvantages

PDFs composed of images have huge file sizes (20 megabytes or more is common for Internet
Archive PDF's, 50 megabytes and up is common for PDF's like this you create yourself) and highly
decorated books can use a lot of memory to read, in extreme cases causing out of memory
errors.

COMIC BOOK ZIP (CBZ)

A CBZ file is simply a bunch of sequentially named images stored in a Zip archive file. Generally
the suffix on the archive is renamed from .zip to .cbz.

There is a related format Comic Book RAR (CBR) which is used more often than CBZ. This
uses a RAR archive file rather than a Zip file, so you need to have a commercial program to
create RAR archives. This may give a slightly smaller file size than a CBZ, but in my opinion not
enough to make it preferable to CBZ.

18

Advantages

Smaller file size than a PDF created with the same images. Very easy to create.

Disadvantages

No support for text to make the pages searchable like PDF has.

DJVU

DjVu is an alternative to PDF's created with book page images. DjVu is a method of compressing
these images that is optimized for documents and book pages. As a result .djvu files are smaller
than the equivalent PDF and can take less memory to read.

Advantages

Noticeably smaller file size than PDF's composed of page images. Also smaller than CBZ's.

19

Disadvantages

Only supported by the later versions of the Read Activity which requires a newer version of
Sugar than .82. Many XO laptops still run .82 or older.

RICH TEXT FORMAT (RTF)

This is a file format invented by Microsoft to simplify sharing documents between different
brands of word processor. Most word processors can read and write this format as well as their
own format.

It may seem like a stretch to consider RTF as a format for e-books, but in fact there are e-
books that use this format. Of all the e-book formats distributed by the Baen Free Library
website only RTF is usable in Sugar .82. (If you have a later version of Sugar that supports EPUB
the Baen Free Library now offers that format).

Advantages

I can't think of any.

Disadvantages

Really there are only two ways to use an RTF file as an e-book: load it into a word processor and
convert it to a PDF, then read that file, or use an e-book reader like Read Etexts that will
convert the RTF to a plain text file when it first loads it.

EPUB

EPUB is a format specifically meant for e-books, unlike all the other formats discussed so far. It
is based on XHTML and Cascading Style Sheets like a web page, and can include image files,
but the various files are stored in a single Zip archive file. There is special XML file called an
NCX that provides a table of contents for the document.

20

This is The Big Book of Aviation for Boys as an EPUB with illustrations. I created the EPUB for
this book.

Advantages

Like PDFs an EPUB can contain formatted text and illustrations.

Like a plain text file the text can be made larger or smaller and the text will re-wrap to fit in the
visible space.

The file size is small.

The format is supported on many devices as well as on computers. It may become the most
popular e-book format.

Disadvantages

Like DjVu, it is only supported by the latest versions of the Read Activity that will not run on
Sugar .82.

While many free e-books are available that use the EPUB format, few make full use of what the
format has to offer. Project Gutenberg EPUBs may or may not have illustrations, and EPUB's
from the Internet Archive are made from OCR'd text that has often not been proofed and
corrected.

This is Pride and Prejudice from Project Gutenberg as an EPUB, without illustrations:

21

Here is the same book from the Internet Archive, with illustrations but badly needing
proofreading:

22

MOBI

The MOBI format is used by the Amazon Kindle. It is not readable by any Sugar Activity at this
time. This is not a problem, because any free e-book in MOBI format will generally be available
in EPUB format as well. In fact, the best way to create a MOBI file is to make an EPUB and then
convert it to MOBI with a utility program.

The MOBI format can't do anything that EPUB can't do as well or better, but while Sugar users
won't be consumers of MOBI content there is nothing stopping them from creating content in
that format and putting it in the Kindle Store. If you want to do that the chapter on creating
EPUBs will show you how.

23

4. SUGAR ACTIVITIES FOR FINDING E-

BOOKS

INTRODUCTION

The Sugar environment uses a Journal to keep all the student's
work in, instead of using files and directories. Every e-book you
read will have its own entry in the Journal. In addition to the file
for the book the entry will have metadata about the book,
including a meaningful Title, a Description of the book, and
Keywords.

If you download all your books using the Browse Activity you'll
find that the file you download will often have a meaningless name
and the Title it will have in the Journal will be long but still meaningless. You would need to
correct the Title and perhaps add a Description for the book yourself.

There is a better alternative to using Browse for most of your e-book downloading needs. In
fact, there are three of them.

GET BOOKS

The Get Books Activity is the newest of the three. It lets users search for books from multiple
online sources such as the Internet Archive and Feedbooks. It also provides support for
removable devices ("Library on a Stick") which have OPDS catalogs in the root directory. OPDS
(Open Publication Distribution System) is a kind of book catalog that anyone who publishes e-
books can create. Currently the Internet Archive and Feedbooks have such catalogs, so Get
Books can download titles from their catalogs. Feedbooks has titles from Project Gutenberg
converted to PDFs. This means that you can find and download the majority of free e-books
available to your Journal using this Activity.

This is what the Activity looks like downloading a book about Thomas Jefferson:

24

OPDS is part of the BookServer ecosystem which has been described as follows:

"The BookServer is a growing open architecture for vending and lending digital books over the
Internet. Built on open catalog and open book formats, the BookServer model allows a wide
network of publishers, booksellers, libraries, and even authors to make their catalogs of books
available directly to readers through their laptops, phones, netbooks, or dedicated reading
devices. BookServer facilitates pay transactions, borrowing books from libraries, and downloading
free, publicly accessible books."

It is possible to customize Get Books by adding more OPDS feeds to it. One such feed can
come from a Pathagar Book server, which I'll describe later in its own chapter. Unfortunately,
you'll need some experience with the Unix command line to do this. Use the Terminal Activity
and become the root user. In the directory where your Activity is installed, generally named
~/Activities/GetBooks.activity, you'll find a file named get-books.cfg. As root, make a copy
of this file in the /etc directory. Anything you put in this file will override what was in the
original get-books.cfg file.

Some Sugar deployments don't give their users root access to the computer. If you are in that
situation you can make a copy of get-books.cfg in the ~/Activities/GetBooks.activity
directory and modify the original. You can revert back to the copy if things go wrong.

The file is organized into sections that look like what Windows .INI files used to have. Add a new
section for each OPDS feed you have. You'll need to use the vi editor. Here is a new section for
a local Pathagar Book Server:

[Pathagar Book Server]
name = Pathagar Book Server
query_uri = http://pathagar.myschool.edu/feed.atom?q=
opds_cover = http://opds-spec.org/image

To use Get Books with a removable device like a thumb drive you need to create an OPDS
catalog with the name catalog.xml and put it in the root directory of the drive. Get Books will
look for that file and if it finds it then the drive will be listed as one of the possible ODPS sources
in the drop-down list.

Here is Get Books using its new OPDS catalog:

25

While calibre can create a collection with an OPDS catalog, at this time the catalog it produces is
a little fancier than what Get Books is able to use. calibre's catalog is a hirearchy of XML files
that allows you to drill down from a list of books down to individual book details. What Get
Books needs is a file where the list of books and the book details are all in one file, like this:

<?xml version="1.0" encoding="UTF-8"?>
 <feed xmlns:opds="http://opds-spec.org/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns="http://www.w3.org/2005/Atom"
 xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <id>pathagar:full-catalog</id>
 <title>Pathagar Bookserver OPDS feed</title>
 <subtitle>OPDS catalog for the Pathagar book server</subtitle>
 <updated>2011-06-13T12:03:26Z</updated>
 <entry>
 <id>0e00c034-95df-11e0-ba86-00096b32bd5b</id>
 <title>Benchley Beside Himself</title>
 <updated>2011-06-13T12:03:26Z</updated>
 <author>
 <name>Robert C. Benchley</name>
 </author>
 <link href="/book/4/download"
 type="application/epub+zip"
 rel="http://opds-spec.org/acquisition"></link>
 <link href="/covers/cover_1.jpg"
 rel="http://opds-spec.org/cover"></link>
 <content>Bob Benchley delivers the laughs.
 </content>
 <dcterms:language>en</dcterms:language>
 </entry>
 <entry>
 <id>cae190c6-95de-11e0-ba86-00096b32bd5b</id>
 <title>The Big Sleep</title>
 <updated>2011-06-13T12:01:53Z</updated>
 <author>
 <name>Raymond Chandler</name>
 </author>
 <link href="/book/3/download"
 type="application/epub+zip"
 rel="http://opds-spec.org/acquisition"></link>
 <link href="/covers/cover.jpg"
 rel="http://opds-spec.org/cover"></link>
 <content>Private Eye Philip Marlowe gets
 involved with dizzy dames with something
 to hide.</content>
 <dcterms:language>en</dcterms:language>

26

 </entry>
</feed>

27

GET INTERNET ARCHIVE BOOKS

Get Internet Archive Books is very similar to Get Books, and in fact Get Books began life as
a modified copy of Get Internet Archive Books, and they continue to use the same icon.
Before the Internet Archive got behind OPDS they had (and continue to have) something called
Advanced Search. OPDS takes a query and returns XML. Advanced Search can return
several formats, but the one Get Internet Archive Books uses is comma delimited lines.
Because of this it will never work with anything other than the Internet Archive. On the other
hand, because it restricts itself to just one source of books it can do things that Get Books
can't do. For instance, it can download e-books in all four formats that IA offers: PDF, B/W PDF,
Deja Vu, and EPUB. Second, in the search results listing you will see Title, Volume, Author, and
Language where Get Books only shows title and author.

28

READ ETEXTS

Read Etexts is an Activity meant to read the Plain Text files produced by Project Gutenberg
and Project Gutenberg Australia. These sites do not yet support OPDS but they do both
provide text files that can be used as a catalog of what books are available and how the files are
named and stored on their systems. PG began in the days when MS-DOS was the most popular
operating system for personal computers, so all of their files have eight character file names. In
the first few years they were in operation they tried to make these short names somewhat
meaningful, but they later changed to a new system which gave every book a completely
meaningless number. Some of the old books have been renamed to the new format, others
have not. Also, while just about every book has a 7-bit ascii format file available many have and
need another encoding that can represent the accents, umlauts, and ligatures used by languages
other than English.

When you download a book using Read Etexts it tries to make sense of all this for you. It looks
for an 8-bit encoded file first, and if it doesn't find one it downloads the 7-bit version. It gives
the Journal entry it creates a meaningful title, like Pride and Prejudice by Jane Austen rather than
56436.zip.

Another difference between the Read Etexts book search and the other two is that the book
catalog is included in the Activity, so you can search for books when you are not connected to
the network. The PG offline catalog is not updated often enough to justify downloading it and
converting it every time you search for a book.

29

Read Etexts looks like this in action:

SUGAR ACTIVITIES FOR READING E-BOOKS
5. The Read Activity
6. The Read Etexts Activity
7. The View Slides Activity

30

5. THE READ ACTIVITY

The Read Activity is one of the core Activities of Sugar, and will
already be installed in whatever version of Sugar you are using.
Although it is available at http://activities.sugarlabs.org you
generally will not upgrade to a newer version of Read than the one
you were given because Read is not fully self contained, so the
version of Read that works with the latest Sugar will not work
with Sugar .82, for instance.

The newest versions of Read use a different kind of toolbar than
the older versions. Since most XO laptops currently have the older version of Read, most of
the screenshots will show that version. I'll switch to showing the latest Read to demonstrate
features only supported on there.

You will usually start Read by resuming a book that you have downloaded to the Journal. The
PDF format is supported by all versions of Read. If you are using the very latest version of
Sugar then Read will also support these formats:

DjVu
Comic Book Zip (CBZ)
EPUB
Plain Text

This is what Read looks like when you resume a PDF. The Read toolbar is selected by default.

The arrow buttons let you page pack and forth through the document. Normally this is not the
way you would navigate. The normal way is to use the Page Up and Page Down keys or the
arrow keys. When the XO laptop is in tablet orientation you can use the game controls to
navigate through the document.

The text field with the current page number in it can also be used to navigate. Enter the page
number you wish to go to and press the Enter key to skip to that page.

The dropdown control is for PDFs that have a table of contents that lets you skip to a chapter.
Very few PDFs have this, and PDFs from Feedbooks for example do not have them.

31

http://activities.sugarlabs.org

The Read Activity remembers what page you left off on when you close it and will return to that
page automatically when you resume the book later. Unfortunately this does not work if you
turn off or reboot your computer between ending the Activity and resuming it if you are using
Sugar .82. The problem is with that version of Sugar (and older ones), not with the Read
Activity. Sugar .84 and later fix this.

The next screen shot shows the Activity toolbar. This is where you can close the Activity,
rename the Journal entry, and share the book with others on the network.

In the screenshot above we have changed the Share with option from Private to My
Neighborhood. This makes your book available for copying by anyone on the network. In the
Neighborhood view this is what everyone will see:

If the person seeing this clicks on Join he will get the book copied to his own Journal.

Next we'll look at the Edit toolbar:

32

The Edit toolbar lets you search for text strings in your book, plus copy text selections to the
clipboard. What may surprise you is that it can do this even for the books from the Internet
Archive, which are made from scanned page images. This is because behind the page image is a
text representation of the text on the page. In the screen shot above someone is searching for
the word "Bingley" in Pride and Prejudice. Note that the search only works as well as the quality
of the text representation allows it to. The text is created by OCR and is not proofread
afterwards.

Copying a passage to the clipboard from this kind of book works too, as this screen shot shows:

As you can see, the words "Is that his design in settling here?" have been successfully copied to
the clipboard. Regrettably the words do not get highlighted on the page when you select them in
this kind of book. They do get highlighted in a conventional PDF.

Next, the View toolbar:

33

The first four controls on this toolbar adjust the size of the page. They can only zoom in and out
on the page for PDFs, CBZs, and DjVus. They cannot simply make the font larger and reflow the
text on the page for these formats, although that is possible for EPUBs.

Now we come to a function of Read that is only supported on the latest versions of that
Activity: multiple annotated bookmarks. The star button shown in the toolbar below creates a
bookmark and opens up a dialog where you may give the bookmark a Title and a Description.

When you close the dialog you'll see that the book has had a star placed to the left of the page.
You can use the arrow buttons on the toolbar not only to move between pages but also
between bookmarks, as shown here:

34

This is the latest Read viewing an EPUB. EPUBs have a built in table of contents which you can
access from the toolbar:

Text to Speech is only supported for EPUBs and Plain Text files so far.

Here is the latest Read viewing a Plain Text file. These can have highlighted passages, and when
you use the Text to Speech function the word being spoken gets highlighted:

35

Ultimately, the Read Activity will be what you use for every supported e-book format. Not
every Sugar user will be able to use the latest Read, however. It is a lot of work to update
Sugar on hundreds of machines in the field, so some children will have to make do with a less
powerful Read Activity.

Fortunately there are alternatives to Read that work on older versions of Sugar and can let you
read e-books that your version of Read may not support. The next two chapters describe these
alternatives.

36

6. THE READ ETEXTS ACTIVITY

The Read Etexts Activity can be used to read e-books in Plain
Text and RTF formats, the two formats that the core Read
Activity cannot handle. (Actually Read on the very latest Sugar
will support plain text files, but the version of Read most
commonly used in the field will not). It was originally written as a
stopgap Activity for reading Project Gutenberg etexts until such
time as the core Read Activity could be enhanced to read them.
However, Read Etexts grew to be something more. Because Plain
Text files are so simple, it was easy to add features to the
Activity that Read did not provide. These features included:

Text To Speech with word highlighting.
A built in offline book catalog that allows searching for and
downloading books from Project Gutenberg and Project Gutenberg Australia.
Text passages may be highlighted and underlined. Pages may be annotated, and multiple
bookmarks may be set. All of these are stored in the book file itself, so when you share a
book either over the network or by copying it to a thumb drive your annotations,
bookmarks, and highlights go with it.
When the book's font size is changed the text wraps to fit within the margins.
The latest version of Read Etexts supports every version of Sugar from .82 onwards. On
newer versions of Sugar it uses the new style toolbar.
On Sugar .82 it can return to the page number you left off on, even if you shut down or
rebooted since you closed the book. (There is a bug in Sugar .82 that prevents this from
working with Read. Read Etexts works around this bug).

37

THE READ TOOLBAR

When you start Read Etexts by resuming a Journal entry the Read toolbar is the first thing you
see:

This is similar to the Read toolbar in the core Read Activity, with the addition of a Bookmark
button (the star) and an Underline button. Clicking on the Bookmark button sets and unsets the
bookmark for the page, just like it does in the latest Read. The difference is that in Read
bookmarks have attached titles and descriptions. In Read Etexts bookmarks are simply
bookmarks.

Here is an example of a highlighted passage.

You can highlight multiple passages on a page, and they are shown with a yellow background and
underlined. On the XO laptop the underlines will be visible in the monochrome mode the screen
uses when the backlight is turned off.

Bookmarks look the same as they do in the latest Read and you can use the menus under the
arrow buttons on the toolbar to navigate between them.

38

You can add annotations to any page, like this:

THE ACTIVITY TOOLBAR

The Activity toolbar is the same as Read has, and you can share books just like you can with
Read. One small difference is in the Title of the book. Read puts the page number in a place
that goes away when the computer shuts down or reboots if you're using Sugar .82 or older.
Read Etexts puts the page number at the end of the title with a "P" in front of it. Thus even
when using older versions of Sugar Read Etexts will not forget what page you stopped reading
on.

39

THE EDIT TOOLBAR

The Edit toolbar is the same as for Read and supports text searches and copying selected text
to the clipboard.

THE VIEW TOOLBAR

40

The View toolbar lets you make the font larger and smaller. The text will wrap to fit within the
margins, and the font size you choose will be saved and applied to all etexts you read until you
change it again. The third control hides the toolbar so you can use the full screen for reading.
You can also make the font larger with the + key, smaller with the - key, and toggle full screen
mode with Alt-Enter.

When you increase the font size most books will re-flow nicely, but a few will not. The ones that
don't have at least one really, really long paragraph. When Read Etexts gets a book from Project
Gutenberg it attempts to remove the line endings from the text so it can flow naturally. Read
Etexts breaks pages on paragraph boundaries. When you have really long paragraphs this
becomes unworkable, so when the conversion function encounters such a paragraph it gives up
on the conversion and the original text with breaks at the end of each line is used instead.

Relatively few books will have this issue, but its important to know when you encounter one why
it is happening.

THE SPEECH TOOLBAR

Read Etexts supports Text To Speech for one page at a time. The controls from left to right
start and pause speech, let you select a voice appropriate to the text, adjust pitch, and adjust
rate of speech. Pitch and Rate settings are saved and used for all etexts until you change them
again.

In Sugar .82 the needed supporting files to use TTS are not provided by default, but you can add
them yourself with the following command:

yum install gstreamer-plugins-espeak

 You may be disappointed with the highlighting of text on an XO laptop. Speech will sound fine,
but the highlighting may lag behind the words being spoken. On a more powerful computer this
will not be a problem.

41

THE BOOKS TOOLBAR

The Books toolbar is only available when you start Read Etexts from the Activity ring without
resuming an existing book. It lets you search an offline catalog of books from Project
Gutenberg and Project Gutenberg Australia, then download them to the Journal. A special
feature of this download is that it will automatically choose the best available format for a book.
It will always look for a book in ISO-8859 format first and will only download the ASCII version if
there is nothing better.

While the Books toolbar is the easiest way to copy books to the Journal for use by Read Etexts,
it is not the only way. You can also use the Browse Activity to download books from Project
Gutenberg. When you do, choose the Zip version of the book, not the text version. The
reason is simple: when you select the Text version Browse will display it as if it was a web page
and give you no way to download it. Browse will be able to download the Zip version.

When downloading books from the Baen Free Library you can download the RTF format. There
is also a Zipped RTF that Read Etexts would be able to read, but for some reason Browse has
difficulty downloading that one.

42

7. THE VIEW SLIDES ACTIVITY

View Slides is an Activity for viewing collections of image files
stored in Zip archives. Since this is identical to the CBZ format
(with the CBZ format using a .cbz suffix on the file instead of .zip)
View Slides can be used as a reading Activity for comic books.
The latest Read also supports the CBZ format so if you're using
Sugar on a Stick you don't need View Slides to read comic books,
but those running Sugar .82 will need it.

There are no large repositories of public domain comic books. Most of the CBZ's and CBR's you'll
find on the Internet violate someone's copyright, although there are a few legal ones on the
Internet Archive that you can find by searching for "CBZ" or "CBR", such as the Gunsmoke
comic shown in the screen shots. Gunsmoke was in the CBR format so I needed to convert it to
CBZ. In Windows you can do that with the free 7Zip utility that you can download here:

http://www.7-zip.org/

What you need to do is unpack the .cbr file to get the individual images, then zip them up and
rename the .zip suffix of the new file to .cbz.

While there are not many legal free comic books, the CBZ format is an easy one to create and is
a good choice for children who want to make their own e-books, slide shows, etc. In addition to
being a reader for this format, View Slides can create and edit files in this format.

Like Read Etexts, View Slides supports most versions of Sugar and will use a new-style toolbar
if the version of Sugar supports it. The screen shots in this chapter are a mix of old and new.

The Read toolbar is the same as Read Etexts without the Underline button:

Using the new style toolbar the most commonly used controls are always visible:

43

http://www.7-zip.org

Like the other reading Activities you can hide the toolbar and view images full screen:

The Slides toolbar is used to organize the images in a .cbz file. You can add images, delete them,
rename them, and extract images to create entries in the Journal. The Available Images
column shows image files in the Journal as well as images on removable media like thumb drives
and SD cards. The Slideshow Image column shows the images in your .cbz. When you select
an entry in either column it will be previewed in the area above the image lists.

READ SD COMICS

44

The Read SD Comics Activity is like a stripped down version of View Slides which is designed
specifically for the XO-1 laptop. The XO-1 has 1 gigabyte of internal storage, which it uses for the
operating system as well as the Journal. CBZ files can be very large. A graphic novel can easily
take up 60 megabytes or more, and the Journal has perhaps 600 megabytes of available disk
space. When you consider all the things that students will use their XO's for that doesn't leave
room for a serious comic book collection.

Every XO laptop also has a slot for an SD card. The slot is designed to make it difficult to
remove the card once it is inserted. An SD card is a reasonably cheap way to add up to 8
gigabytes of storage to your XO. The problem is, Sugar can't really use it for much. The Journal
is limited to internal storage.

What Read SD Comics does is simple. You copy your comics onto the SD card. Next you launch
Read SD Comics from the Activity ring and you'll see something like this:

This lets you navigate to your SD card (or USB thumb drive) and select a CBZ or Zip file. When
you do you'll see a preview of the first page of the comic to the right. Press the Read Comic
button and a new Journal entry will be created that links to the comic and the comic will be
loaded for reading:

45

You can zoom in and out, view full screen, etc. just like with View Slides:

There are some features missing from Read SD Comics that are in View Slides:

Annotations
Multiple bookmarks
Book sharing

However, you do get the full benefit of having a Journal entry. The last book you read will be at
the top of the list, you can rename the entry and add descriptive text to it, and it will remember
the page you left off on.

46

Read SD Comics is intended to be used on an XO-1 with an SD card but it may be useful with
Sugar on a Stick as well. If you have a bunch of comics on a CD or DVD Read SD Comics will let
you create links to them from the Journal and treat them as if they too were stored in the
Journal. Of course, when you delete a Journal entry for Read SD Comics that does not delete the
comic from the SD card; it just deletes the Journal entry that links to it.

Read SD Comics may be useful for other things than comics. For instance, if you've created a
bunch of page scans for Project Gutenberg and put them in a Zip file you can use this Activity to
check them over:

This is a collection of page scans for four Raymond Chandler detective novels. Raymond
Chandler has been sleeping The Big Sleep since 1959, making his books public domain in Canada.
I created this set of scans for Distributed Proofreaders Canada.

CREATING YOUR OWN E-BOOKS
8. Before We Begin
9. Converting Your Own Documents
10. Booki
11. Scanning Book Pages
12. Making PDF's
13. Making CBZ'S
14. Making DjVu's
15. Making Plain Text Files
16. Making EPUBs

47

8. BEFORE WE BEGIN

There is a lot of information in this section, so before you start
reading it I want you to think about what kind of e-book you're making and why you're making
it. The answers to these two questions will determine what material you need to understand
and what you can safely skip. Some answers I can think of are:

You have some handouts that you have created in MS Office and rather than printing
them off and getting them photocopied you'd like to make PDF's out of them and distribute
those to your students.
You have some students with reading problems. You'd like to make Plain Text files from
your handouts so these students can use Read Etexts, which supports Text To Speech
with word highlighting.
You have textbooks that you'd like to convert to e-books so your students don't have to
lug them around. You don't care if the e-book is laid out exactly the same way on the
screen as it is on the page, as long as the words and pictures are all there.
You want to make Plain Text versions of your textbooks for your students with reading
problems.
You own some lavishly illustrated children's books and you'd like to make e-books out of
them for your students. It is important that the e-book pages look exactly like the book
pages.
You own some lavishly illustrated children's books and you would like to make e-books
from them to donate to the Internet Archive.
You own some lavishly illustrated children's books older than 1923 and would like to donate
the books themselves to the Internet Archive so the experts there could make e-books
out of them.
You own some books copyrighted before 1923 and you'd like to make Plain Text e-books to
donate to Project Gutenberg.
You own a copy of White Shadows In The South Seas, published 1919, which you willing to
scan and OCR for Project Gutenberg if only you could get some help with all the
proofreading that would require.
You've written a textbook yourself and you'd like to make an EPUB out of it.
You want to collaborate with other teachers to create a textbook, and hope to get it
translated into several languages.
You teach a class where the students all have XO laptops and nothing else and you'd like
to have the students make some simple e-books using just those computers.

From a technical standpoint, converting a document you created yourself into an e-book is
trivial. It is no more difficult than saving a document made in one word processor into the
format used by a different brand of word processor.

The website Booki provides a way to create e-books in collaboration with other authors and get
those books translated into multiple languages. This very book you are reading was created
using Booki.

Making an e-book out of a printed book is more difficult and more work than converting your
own work into an e-book. You need to turn printed pages into images, turn images of text into
text, proofread everything and correct several kinds of errors that will inevitably come up.
Making an e-book to donate to Project Gutenberg or the Internet Archive is more work than
making one for your own use. However, the results can be well worth the effort.

Every kind of e-book can be made with free software that is easy to use. In the chapters that
follow I begin with the easiest possibilities (creating an e-book from a document you made) and
finish with the more difficult ones. If you aren't planning to create an e-book from a printed book
the first chapters may be the only ones you need to read.

48

I will explain how to do every task using Windows and Linux. Much of the software I'll talk about
is available for the Macintosh as well, so if you have one you should be able to figure out how to
do things there too. Most of the software we will use was originally written for Linux and later
adapted to the other platforms. It is no more difficult to use than other Windows software.
Sometimes I will explain tricks that only work in Linux, but I will always provide an alternate
method for Windows. Linux is an operating system for those who like to open the hood and
tinker. If you are a teacher some of your more difficult students may one day fall into this
category. These tricks are for them, and may safely be ignored by others.

If you have a Macintosh and want to install and run software described here you may need to
use Mac Ports, which you can learn more about here:

http://www.macports.org/index.php

I'm not a Mac user so I won't be able to give detailed advice on installing these programs on a
Macintosh.

Don't be intimidated by the amount of information in the chapter on scanning books. In the end
all you're doing is taking pictures of the book pages with a digital camera, then rotating, cropping,
and cleaning up those pictures. The detailed information in this chapter will make that process
as painless as possible.

PYTHON PROGRAMS

Some of the chapters have very short Python programs in them. Don't be put off by these.
Like all other computer programs they are meant to save you work, and they will if you give
them a chance.

Python programs can be run on Windows, the Macintosh, or Linux. Linux is the simplest,
because Python is used so much on that platform. A typical Linux install will have Python
installed by default. For Windows and the Mac you can download Python here:

http://www.python.org/download/

The version you want will be Python 2.7.1. Python versions starting with 3 probably will not
work. Don't be concerned that you aren't using the latest version of Python. At this time
Python 3 is not widely used. When it is more mature I'll rewrite these programs to use it.

The proofer.py utility requires PyGTK. While there is a PyGTK download for Windows, you'll need
to use Mac Ports to get it on the Macintosh. PyGTK is included with every Linux distribution.

To download and install PyGTK for Windows you'll need to follow the instructions here:

http://www.pygtk.org/downloads.html

On Windows a version of GTK+ is included with The GIMP install, but is not adequate for running
PyGTK. You'll need to uninstall it, install the new GTK+ bundle, and replace the PATH entry for
GTK to point to the new one. If that sounds like a lot more work than you normally go through
to install a Windows program, it is. You may find running proofer.py on Windows more trouble
than its worth. The other Python programs should still be useful on Windows.

The Python programs themselves can be downloaded here:

http://git.sugarlabs.org/e-book-making-scripts/mainline/trees/master

One trick for downloading them is to click on the program name on this page, which will give you
a formatted listing of the code. When you get that look to the upper right of that listing for a
link named Raw blob data. Click on that to download the program.

49

http://www.macports.org/index.php
http://www.python.org/download/
http://www.pygtk.org/downloads.html
http://git.sugarlabs.org/e-book-making-scripts/mainline/trees/master

To download all of the programs look for a link named Download master as tar.gz. That will
give you an archive file that you can open with 7-Zip.

A simple way to run these programs is to put Python in your system path (see
http://www.computerhope.com/issues/ch000549.htm for instructions for Windows), put the
program in the directory where the files you'll be working on live, make that your current
directory, and run a command line like this:

python programname.py arguments

50

9. CONVERTING YOUR OWN DOCUMENTS

PDF'S

PDF's are useful for class handouts as well as e-books, and they're
surprisingly easy to create. You have a couple of options in MS
Windows:

CutePDF Writer
Open Office

CutePDF Writer

PostScript is a programming language used to send formatted pages to PostScript printers for
printing. A PDF is a compressed version of a PostScript file. Any program that can print can
create a PostScript file, which can then be converted to a PDF. CutePDF Writer does this in
one step. When you install CutePDF Writer it is listed as one of your available printers, like this
Print dialog for Windows shows:

If you select this as your printer when you print your document, nothing will be sent to your
printer. Instead, you will be prompted to supply a filename and directory for a PDF. Anything
you can print can become a PDF. Excel spreadsheets and charts, Word documents, Powerpoint
slides, and anything else that you can print can be turned into PDF's.

You can download CutePDF Writer here:

http://www.cutepdf.com/products/cutepdf/writer.asp

CutePDF Writer is only available for Windows.

Open Office

51

http://www.cutepdf.com/products/cutepdf/writer.asp

Open Office is a free office suite that does everything that Microsoft Office does and one thing
MS Office does not do: it can create PDFs from any document. From the File menu choose
Export as PDF as shown here:

You'll see this dialog:

52

Notice that this dialog has several tabs worth of options for creating PDFs. While the PDFs
created by CutePDF Writer are perfectly adequate for most uses, Open Office lets you add
bookmarks and other features to your PDFs. Another advantage of Open Office is that it is
available for Windows, Linux, and the Macintosh. It reads and writes MS Office files as well as its
own formats.

You can download it for free here:

http://www.openoffice.org/

Creating PDFs On The Macintosh

Mac OS has PDF support built into its Print dialog. Any time you print anything on the Mac you
have the option of making a PDF instead. You can read how to do this here:

http://www.apple.com/pro/tips/saving_as_pdf.html

 PLAIN TEXT FILES

Creating Plain Text Files From Word Processed Documents

If you have a document created in any word processor it should be simple to make a Plain Text
document out of it. In MS Word there is a Save As... option in the File menu. The dialog that
comes up lets you choose to save the document in the formats used by various word
processors, plus there is an option for Text File. If you choose that you'll get this dialog:

53

http://www.openoffice.org/
http://www.apple.com/pro/tips/saving_as_pdf.html

Taking the default values for these options should give you a usable document. One option you
may consider using is the checkbox for Insert line breaks. This puts a line break at the end of
each line of text, which is how your document would be formatted if you hit the Enter key after
typing in each line rather than just letting the text wrap. About the only time you'll ever want to
do that is if you're working on a text file to submit to Project Gutenberg, because they put a line
break at the end of each line. (Be sure and specify that you want to end lines with CR/LF too.
That's another requirement Project Gutenberg has). If you want to create a file for the Sugar
Read Etexts Activity or any other plain text reader you should not insert these line breaks. (In
the case of Read Etexts if you did put in the breaks the Activity would reformat the file to
remove them, and may produce a file that is less well formatted than what you would get if you
left off the breaks to begin with).

54

10. BOOKI

Booki is a website used to create e-books. The URL is:

http://www.booki.cc

Most Internet users have encountered Wikis before. Everyone
has at least heard of Wikipedia, the encyclodepia written and
edited entirely by volunteers. Essentially, a Wiki is software that
enables people to edit a website from within the website. Many
free software projects use Wikis for documentation purposes, and
both the One Laptop Per Child project and Sugar Labs have their
own Wikis. While Wikipedia is an example of what this approach
can achieve, very few Wikis are as well maintained as Wikipedia.

Some people involved with the free software movement felt that what was needed was not
Wikis, but free manuals. A Wiki tends to branch off in all directions. However, a manual needs to
be more formally structured, with a Table of Contents and attributed authors, and ideally should
be something that you can copyright, print and bind, give an ISBN number, and sell on Amazon.

The website FLOSS Manuals was created to meet this need. The letters FLOSS stand for Free
and Libre Open Source Software. If you've been paying attention you probably realize that the
book you are now reading came from that very site. This book and the others on the site are
not just articles on the web. You can create a PDF from them and read it as an e-book, and
quite a few books on the site can be ordered as bound and printed books from a publish-on-
demand service like Lulu (http://lulu.com/).

FLOSS Manuals originally used a modified version of Wiki software called TWiki, and a good part
of this book was written with that version of the software. The longer-term goal was to create
a web-based platform specifically for making books. That software, you've probably guessed, is
Booki.

One key difference between FLOSS Manuals and Booki is that the FLOSS Manuals website is only
for manuals for free software, nothing else. You need to propose a topic for a manual on the
site mailing list, and if it is approved someone will create the book for you. When you are ready
to publish your book on the site you'd need to send another request to the list to ask for that to
be done.

Booki is different. Anyone can create a book on Booki, on any subject. Where you publish the
book is up to you. The software will let you generate your book in a variety of formats, including
HTML, PDF, and EPUB. You can take this output and host it wherever you like. The PDF and
EPUB could be donated to the Internet Archive as a Community Text, and you could publish the
HTML on your own website. FLOSS Manuals will continue to be hosted on the FLOSS Manuals
website.

This is what Booki looks like when editing a book (in fact this very book, under its original title).
You will notice that I'm using the Sugar Browse Activity, which is completely adequate for the
purpose:

55

http://www.booki.cc
http://lulu.com/

Booki is one of the best tools available for Sugar users to create e-books. It can be used on the
XO or from Sugar on a Stick. It supports many authors collaborating on a single book. It
supports translating books into many languages. It can create PDFs and EPUBs. It can create
books formatted for print-on-demand services. It can create documents in Open Office ODT
format (which Open Office can convert to MS Word format). It can even be used to download,
proofread, and correct EPUBs created by the Internet Archive.

Booki is an excellent option for teachers preparing textbooks, but it can be used by students for
their own projects too. Here is another screen shot showing how you can upload Journal entries
containing images to the image directory for a Booki project:

 Here's another one showing how you can select an image and insert it into your book:

56

In addition to Browse you'll want to get the Sugar Commander Activity which has a number of
useful functions that involve creating and updating Journal entries. The latest of these is a
button to resize image files to any width. Booki needs images to be 600 pixels wide or less, and
Sugar Commander can do the resize with the push of a button:

I even used Sugar Commander to resize the screen capture above for this book:

57

After this, I uploaded the resized screen capture into the book:

A complete description of how to use Booki is outside the scope of this book. If you want to
learn more, check out the Booki User's Guide:

http://www.booki.cc/booki-user-guide/how-can-i-use-booki/

A FEW THOUGHTS ON COLLABORATION

58

http://www.booki.cc/booki-user-guide/how-can-i-use-booki/

The main reason to use Booki rather than a word processor to write a book is to effectively
collaborate with other authors. The book you are reading is my second attempt to do this (and
the Spanish translation of my first FLOSS Manual would definitely qualify as a third) so my
opinions on this might be worth something.

The first thing is that there are good reasons to collaborate and not so good. A good one is that
your collaborator can bring expertise to the book that you don't have. A bad one is that you
think there will be less work for you if you have a collaborator. There are many human
activities where "Many hands make light labor". Writing a book isn't one of them.

Many successful software manuals have been written using the "Book Sprint" method. This
involves getting a small group of people in the same physical location for about a week and
having them write the whole manual together in that one week. I had a coworker of mine
involved in the Book Sprint to update the manual for CiviCRM, a software package used by non-
profits. She had done some work on the software to support the Jewish calendar because her
synagogue needed it, and this work had impressed the developers of CiviCRM enough that they
invited her to participate in their Book Sprint. They had a grant, so they paid her traveling
expenses to Lake Tahoe and put her up at someone's home for a week. She took a week's
vacation to work on it. Others worked on the book remotely. Nobody got paid for their work.

If you're interested in doing a Book Sprint there is a FLOSS Manual on the subject, plus another
FLOSS Manual on "Collaborative Futures" which is itself the product of a Book Sprint.

My books were not written using the Book Sprint method. My books were more of a slog than a
sprint, and I didn't get a bunch of people to commit to working on my book full time for a week.
What collaboration there was was informal and spread over months. My first FLOSS Manual
was a book on creating Activities for the Sugar platform; in other words how to write programs
that would run on the XO laptops used by the One Laptop Per Child project. There is no way a
Book Sprint could have produced that book. I had to create a bunch of short programs to
demonstrate everything that can be done on that platform and how to do it simply. I needed to
be test and debug them. I had to set up several versions of test environments.

You might not think of that book as a collaborative effort, since I wrote every word in it, but in a
very real sense it was. I got lots of feedback from other developers, help debugging my
examples, help resolving problems with the test environments, and many useful suggestions.
Writing the book on the web made that kind of collaboration much easier.

There were a couple of people who offered to write chapters for the book, but this did not come
to pass. In the end this didn't matter; the book ended up doing what it needed to do.

After this first book was published there was interest in creating a Spanish version. Some of the
most successful OLPC projects have been in South America, so I definitely wanted there to be a
Spanish version. Unfortunately, I don't speak any Spanish, so I didn't feel qualified to do it. I
explained on our mailing lists that it would be very simple to request a book project to be set up
on the site for a translation, and that the site offered an interface where you could view the
original chapter while writing the translation (when we started this we used the original TWiki
software for the translation. Booki doesn't have a side by side translation view yet). Several
people offered assistance, but nobody requested the project to be set up. I decided to do this
myself, even though I couldn't translate anything.

After the project got set up a couple of people got accounts on FM and looked over the book,
and one of them translated a few paragraphs. Several of the people who had offered to help
were concerned that they did not have the technical knowledge to translate the book, and for
several days it looked like nobody was going to work on it.

59

A friend suggested using Google translate to create a base translation that native speakers could
correct. I ended up using Babel Fish instead because the HTML generated by Google Translate
had a lot of extra stuff in it like JavaScript and the original English text being translated. After I
started doing this a retired teacher who was fluent in Spanish started to correct the text, and I
went through and untranslated things that should not be translated, like code examples. It really
needed native speakers to get it into shape. The retired teacher sent out an email on some
lists explaining that we had a translation going that needed to be corrected. After that several
native speakers got accounts on the site and started to correct the text.

What I learn from this is that starting a book from nothing is intimidating. However, once the
book reaches a critical mass and there is no doubt that there will be a finished book you'll find
that getting help and feedback is easier, almost inevitable.

This was not the end of the problems getting the book translated. While we had several people
willing to polish up the Spanish in the earlier chapters, none of them were confident in their
ability to update the more technical chapters later on. We were fortunate enough to have
someone come along who did have a technical background, but she wanted to start the whole
translation over again, using no automated translation at all.

She felt very strongly that while a machine translated book might be tolerable for adults, for
students still mastering their native language it needed to be much better. The Spanish teacher
in her school often pointed out the relationship between mastering your first native language and
mastering of formal languages, including mathematics. Adults can deal with a poorly translated
book but children should not have to.

I was not sure this was a good idea, but she did manage to recruit a large team to do a
complete translation that way. Since she was starting over the whole job was done in Booki and
the old Twiki version was abandoned.

The work her team did was absolutely terrific, but I still believe that if we didn't start with the
awful machine translated version we would never have gotten the good one.

This second translation involved a twelve native speakers with technical skills. It was practically
a Book Sprint. The leader of the project, Ana Cichero, recruited the volunteers and made them
responsible for individual chapters. They put footnotes at the end of each chapter to indicate
who translated what, in addition to the "Credits" chapter at the end. She also set a deadline to
get the book published (the Winter solstice). She came up with an interesting way to assign
chapters to translators: In the name of the chapter in the main page the translator would put his
name and the percentage complete of the translation. For chapters with no translator there
would be question marks. This allowed everyone to see the progress of the book at a glance:

60

Instead of publishing the book several times as it was being worked on Ana wanted to publish it
only once when it was completely finished. (She tells me that in retrospect publishing several
times might have been better). She reached a point where the translation was ready to go but
it turned out that there were still problems with the book:

1. When you create a book with Booki every picture in the book must be contained within the
book. You cannot link to a picture elsewhere and have the picture show up in the
published book. Unfortunately, the HTML editor Booki uses does show the picture if the
URL is outside the book, so even though the picture is not put in correctly it looks like it is
there, both in the editor and in the View page. This makes this kind of problem difficult to
detect.

2. Some of the team members preferred to use Word to edit their chapters rather than the
Booki editor. This can cause problems, because Word produces HTML that is poorly
formatted and which contains extra style information that can cause problems when
making a PDF. Again, the Booki HTML editor makes the page look just fine. You need to
activate the HTML mode to see the problems. Some used word processors to do spell
checking. (The web page editor in Booki actually offers spell checking, but it wasn't working
at the time).

3. Some team members used Google Translate to create a starting point for their own
translation. Unfortunately this creates HTML with a lot of extra tags, including the original
text alongside the translation. If you want to do an automated translation Babel Fish
HTML is much cleaner, although the translation may not be as good as Google's.

4. In a couple of cases team members used plain text with a large font instead of h1, h2, h3,
etc. tags. This looks fine but hides the structure of the book from OBJAVI, so it can't do
as good a job of generating tables of contents.

61

There was a lot of unexpected work at the end, but I can't argue with the results. The
translation team did an outstanding job!

The best motivation to collaborate on writing a book is a desire for the book to exist. To quote
Antoine de Saint-Exupery:

“If you want to build a ship, don't drum up people together to collect wood and don't
assign them tasks and work, but rather teach them to long for the endless
immensity of the sea”

If you can sell people on the idea of the book you'll get collaborators. That's another reason you
may have to write a substantial chunk of the book before collaborators show up. A partial book
is easier to sell than an idea for a book.

With the book you are now reading I got collaborators in the conventional sense of the word.
Before I had worked on Make Your Own Sugar Activities! I had written the Get Internet Archive
Books Activity described in an earlier chapter. In the process of doing that I met some people
from an organization in Oregon called the Rural Design Collective. This is a group that has done
work for both the Internet Archive and the One Laptop Per Child project. They have a summer
mentoring program where talented students get involved with an Internet project and learn skills
that may lead to a future career.

When I announced that Make Your Own Sugar Activities! was finished I got an email from Rebecca
Malamud of the RDC congratulating me. The book you are now reading was in the thinking
stages and knowing of her work with the IA I told her about my plans for the new book and
asked if she'd like to contribute.

At that point the RDC was contemplating what to do for their summer mentoring program and
they decided that working on my book might be just what they were looking for.

We all wanted the book to exist, but for different reasons. The RDC is focused on training young
people to create websites, and so they chose to focus on the graphic design of the book more
than the content. They did provide some content: the chapter on publishing e-books with gCI is
mostly theirs (the RDC created that software).

The RDC found a talented young artist who did some terrific cover and interior illustrations (the
small ones at the top of each chapter). The cover illustration that everyone liked didn't really go
with the title I had proposed, so I ended up changing the title. (The same artist also did new
cover art for the printed Make Your Own Sugar Activities!) Another of their mentees created
style sheets which they used to create a really beautiful bound and printed edition of the book.
The page layouts he came up with were fancier than anything Booki could create, for instance
having multiple columns on some of the pages.

One of the best ways that Booki can help you collaborate is to send you emails when anything in
the book has been changed. The emails have links that let you compare the previous and
current versions of changed chapters side by side. Booki also lets you add notes to each
chapter.

In addition to the RDC's work I also got much help and encouragement from the forums of DIY
Book Scanning and Distributed Proofreaders. Again, this is not collaboration in the way the word
is normally used, but it was a vital contribution to the book. I would post a link to the book on
the FLOSS Manuals website and ask for comments. The comments I got often contained
valuable information and suggestions.

So in summary I'd say that even if you can't afford to send a bunch of people to Lake Tahoe for
a week you'll still find Booki is a good way to collaborate on writing a book!

USING BOOKI TO CORRECT INTERNET ARCHIVE EPUBS

62

In the chapter on e-book formats I was a little harsh describing the EPUBs distributed by the
Internet Archive. Actually, I am at the same time full of admiration for them. IA books are
submitted as PDFs containing only page images, without text. From this IA's software does OCR
on the pages, formats the text into paragraphs, figures out where illustrations are on the pages
then crops them to size and puts them into the e-book reasonably close to where they would be
in the original book. As a professional computer programmer, I consider this no less miraculous
than transforming sausages into a live pig.

Having said this, the fact remains that these books need lots of proof reading and correcting. If
the book is one you donated yourself, it is possible to download the generated EPUB from IA,
correct it using an EPUB editor like Sigil, and then replace the original EPUB on the IA website
with your corrected version. Booki lets you do the same thing on the web with collaboration.

You can easily copy any IA EPUB into Booki using this page:

The Identifier "ThirteenWomen" is from the IA website page for a book I donated, Thirteen
Women by Tiffany Thayer. Click Create and the book will be downloaded from the IA website as
an EPUB and imported into Booki. Once there anyone can work on it just like any other Booki
project. This is the Big Aviation Book For Boys being edited in Booki:

63

Using the example of the Big Aviation Book For Boys, suppose your school has a club for model
aviation enthusiasts and they wanted to fix up this book and others like it as a club project. One
thing they'll want to do is set up a Group for all the books they plan to work on:

Any books they import can be added to this Group.

64

Most of the proofreading for this book can be done without referencing the original book. There
will be things like page headers and footers to remove, paragraphs split across two pages that
need to be re-joined, illustrations that need to be moved to between paragraphs that currently
are stuck in the middle of a paragraph, formatting chapter headings and correcting obvious
misspellings. In this book several numbers are garbled, and the only way to correct those and
errors like them will be to refer to the original book in PDF or DjVu format. Rather than do that
every time they see such an error, our club members might prefer to use the Notes tab to list
all such errors that they find so they can be corrected at the same time:

When the Prop Spinners are satisfied that the EPUB is in good shape they can send it to the
Internet Archive using the Export tab:

65

It is likely that the Prop Spinners would be correcting books they did not donate themselves, so
replacing the original generated EPUB will not be an option for them. What they can do is to
create a new entry in the catalog containing just their corrected EPUB.

THE REPLACING TEXTBOOKS PROJECT

Sugar Labs has begun a project to create Open Educational Resources to replace ordinary
textbooks. This project will have its own installation of Booki. If this sounds like something you'd
like to participate in you can read about it here:

http://wiki.sugarlabs.org/go/Replacing_Textbooks

66

http://wiki.sugarlabs.org/go/Replacing_Textbooks

11. SCANNING BOOK PAGES

I like going to used book sales and one of the things I generally pick
up at these sales are interesting older books. I'm not talking
about first editions of well known books, but obscure books that
will probably never be printed again but which have something
neat about them. It's kind of fun owning books that nobody else
has, but I think it would be more fun to share my collection with
the world in e-book format. To do that I need to create images of
the book pages.

FLATBED SCANNER OR DIGITAL
CAMERA?

You might think you need a flatbed scanner to create book page images. While you could do it
that way, it isn't the only method. Flatbed scanners are very, very slow. When scanning printed
material (as opposed to photos) you need to scan at a very high rate (300 DPI or more) to get a
clear image. Putting a book on a flatbed scanner can damage the binding too. There is an
alternative, which is to take pictures of the pages with a digital camera.

Using Digital Cameras

Libraries and other institutions use machines like the Atiz Book Drive, which uses two digital
cameras to digitize books. You can read about it here:

http://www.atiz.com/

There are no prices on the website, which suggests that these are really, really expensive.

Many amateurs have built their own book scanners, and the place to read about their work is
here:

http://diybookscanner.org

These book scanners go from bare bones to professional quality. Here is an elaborate one
designed and built by Daniel Reetz, who runs the site and has given permission to use these
pictures:

67

http://www.atiz.com

The basic idea is that the book is held open at a 90 degree angle in a cradle. Two pieces of
glass, also at a 90 degree angle and called a platen, hold the pages flat so they can be
photographed by two digital cameras. Bright lights shine down on the book from above. Here is
a view of the book in the cradle held flat by the platen:

If I didn't value my marriage so much I would build something like this. Fortunately for me there
is an alternative. The very simplest book scanner you can make is described in an article at
www.instructables.com:

http://www.instructables.com/id/Bargain-Price-Book-Scanner-From-A-Cardboard-Box/

I built one of these myself one Friday evening and spent most of that Sunday scanning my first
book. Here it is, the Simmons Home Book Scanner Mark I:

68

http://www.instructables.com/id/Bargain-Price-Book-Scanner-From-A-Cardboard-Box/

If you could see it up close you'd find it even less impressive than the picture. It consists of the
following parts:

One cardboard box, salvaged from a dumpster at work, sealed shut with strapping tape
and sliced diagonally to create two wedges. The wedges are taped with strapping tape to
the table. The distance between the wedges is the thickness of the book's spine. The
purpose of the wedges is to cradle the book so that the pages can be photographed.
One desk lamp, cost $30 without bulb. The lamp should shine straight downwards onto
the book as shown. If there are other lights in the room turn them off.
One 100 watt incandescent bulb, saved from when we converted to Compact Fluorescents
because I never throw out anything that might be useful.
One piece of glass from a picture frame bought at Walgreen's. The glass needs to be
bigger than the book page. You will use the glass to hold the page you are photographing
flat.
One tripod originally bought for use with a video camera. It is vitally important to have
something to hold the camera steady and pointed at the page in such a way that the
camera is parallel to the page and the image of the page is an untilted rectangle. If you
don't get it completely perfect you may be able to fix some problems with software, but
you definitely do not want a hand held camera for this!
One Kodak 5 Megapixel camera which we already had. You might want a better camera
for books with larger pages, but for the books I'm doing the Kodak was fine.
One computer with free software to post-process the images taken by the camera.
Whatever computer you already have should be fine.

I used the setup in the picture to scan my first two books. That experience convinced me that I
really needed a proper platen, so I made the one shown here:

69

There are many designs for platens, and they are all cheap to make, but what I was looking for
was something easy to make. The design I came up with consists of:

Two Lexan sheets, 10" x 11", eight dollars apiece at Menard's
Two metal brackets meant for mounting shelves, a little under seven dollars apiece at Do
It Best Hardware. I have seen similar brackets at a local Dollar Store for a dollar apiece.
Epoxy glue and a set of small clamps to hold everything in place while the Epoxy cured. I
could have drilled holes in the Lexan and used nuts and bolts instead of epoxy, and if I was
going to make another one I'd do it that way..

The procedure to scan books with this setup is as follows:

Put the book between the two wedges with the front cover facing the camera.
Remove all existing pictures from the camera's memory. This is important!
Using the glass (or platen) to hold down the pages, start photographing the book from front
to back getting the front cover and all the right-hand pages all the way to the end of the
book. Zoom in so the book doesn't quite fill the frame. Use a close-up setting if your
camera has one. Set white balance to Incandescent or Tungsten. Try very hard not to
photograph a page more than once or miss a page.
When you're done connect the camera to your computer and download all the images to
their own directory named something like "Book Title Right Pages". Have the computer
delete the images from the camera afterwords.
Plug the camera into the charger and take a nap.
Repeat the process for the left side pages, being sure to go from front to back. You will
very much regret going the other way. Download the pictures into a different directory
than you used for the right side pages.
The scanning process proper is complete. What remains is post-processing.

Using A Flatbed Scanner

At this point you might think that the digital camera method is definitely the way to go and that
you should never use a flatbed scanner at all. It isn't that simple. There will be times when the
flatbed scanner will do a better job with less work than using cameras.

70

If your book is small enough to scan two pages at a time, you might save enough time not
having to find and replace missing or duplicated pages to make up for the additional time
scanning the pages.
If you plan to submit the book to Distributed Proofreaders they might want black and
white PNG files for all the pages for OCR and proofing purposes. A scanner can produce
output like that directly and give better results than converting photos for that purpose.
There are a whole host of problems like keystoning, white balance, and skewing that are
easier to avoid on a flatbed scanner than they are when using a digital camera.
A scanner might do a better job on illustrations than a digital camera. When I make EPUBS
I will sometimes create page images for OCR using the camera, then use the scanner on
just the images to get the best possible quality.

When using a scanner use a DPI of 300 for text pages, and 600 for illustrations. On Windows
you can use the Scanner and Camera Wizard to make the scans. Use the Back button after
each scan rather than going to Finish each time. The scanner wizard will automatically name
your scans with a sequence number (except for the first one, which will have the name you give
it with no number afterwards. You can rename it to have the sequence number "000" when
you are finished scanning).

THE POST PROCESSING FORK IN THE ROAD

There are two ways you can take the images you have made and make an e-book out of it.
One way is easy, mostly automated, and produces pages that are readable and attractive. The
downside is that the pages don't look exactly like the pages in the book. The margins will be
different, and the text will be black on a white background no matter what the page color was
originally. However, the result will be a nice, compact e-book.

71

The other way strives to preserve the original look of the pages as much as possible, and is
largely manual. It is more work, and may give results that are less than perfect. The file size of
the e-book may be larger. In the scans the Internet Archive does itself they try to preserve the
look of the original book, and if you want to follow their example this method is the way to go.
(There is no requirement to do this. You can use Scan Tailor to prepare submissions to the
Internet Archive if you wish). If you have a book that is lavishly illustrated (children's books are a
good example) you'll want to use this manual method. For example, consider this book from the
Internet Archive:

You can't get results like that automatically.

The steps in both methods are the same, but in the mostly automated method the computer
does most of the work. To make the whole process understandable it makes sense to describe
the manual method first. I will call this method ...

THE ROAD LESS TRAVELLED

Trimming The Pages

If you've done everything right when scanning the book you'll have a bunch of images that look
like this:

72

Granted, that doesn't look too promising but it will get better. The book I scanned was published
in 1928 and is titled The Big Aviation Book For Boys. It is filled with true stories of aerial heroism
and will appeal to any boy with red blood in his veins and the sort of girl who is not put off by
books with Boys in the title.

The first thing we need to do is rotate all the images. In Windows you can open the directory in
an Explorer window, do a Select All, then right-click on one of the images and choose one of the
Rotate options. In Linux the gThumb Image Viewer will let you do the same thing. In this
example right-side pages are rotated clockwise, left side pages counter-clockwise. Doing it this
way will rotate every image in the window, giving results like this:

73

 Next we need to crop the image so all that is visible is the page. We do this with a free
program called The GIMP (GNU Image Manipulation Program). The GIMP is like a free version of
Adobe Photoshop. You can download it here:

http://www.gimp.org/

There are versions for Windows, Linux, and the Macintosh.

A more elaborate book scanner than the Mark I might hold pages in place consistently enough
that you could crop the page images automatically. As it is I probably moved my camera on the
tripod several times when photographing the pages, so I decided to crop the pages by hand. I did
this by loading each picture into The GIMP, selecting the boundaries of the page with the Select
tool, then choosing Crop Image from the Image menu. This created an image like the one
below, which I then saved.

74

http://www.gimp.org

You'll notice that the text on the pages is a little cockeyed (the technical term is skewed) and if
the book is as old as the one I'm scanning here the pages look old and dirty. Actually, the real
book pages are not as brown as this image would suggest. I could not find the white balance
setting on my camera when I took these pictures, so I used the normal setting. Since then I
found how to change the setting and why it's needed. When a camera takes an indoor picture
without a flash the color in the picture is distorted a bit depending on what kind of light is in the
room. If the light is incandescent you get an orange tint to the picture. You can set the white
balance to Incandescent (on my Kodak camera it's called Tungsten) to correct for this.

Correcting Skewed Pages Manually

75

When I scanned my second book, an Illustrated Junior Library version of The Arabian Nights, I
managed to set the white balance to Tungsten and figure out a way to de-skew the pages. Here
is a page image that has been rotated.

The page looks great, but it's skewed. Under the Layer menu of The GIMP is a sub menu called
Transform which has a menu option Arbitrary Rotation. Select that and you'll get this dialog:

76

By moving the slider to the left and right we can rotate the entire image so that the page within
the image is reasonably vertical. Tip: when the focus is on the slider you can use the arrow keys
on your keyboard to get a more precise control than is possible with the mouse. Second tip: you
can use the edges of the dialog to line up the edges of the page. When they are parallel the
page is correctly aligned.

77

Now we do our final crop to get the page, ready to save:

78

If I had the opportunity to re-scan the Boy's Aviation book I would definitely do it this way.
(Some would argue that I do have this opportunity, since I still own the book. What is lacking is
the desire to re-scan the book. Soon you'll see how I was able to avoid re-scanning it and still
have a usable e-book).

Correcting Keystoned Pages

If you didn't line up your camera exactly parallel to the page your page images won't be perfectly
square. The borders of illustrations make this problem quite noticeable:

79

In the original book the four pictures were rectangular with square corners. If you have some
pages that are noticeably like that you can use the Perspective Tool in The GIMP to try and fix
it. Select the area that needs fixing and the tool will give you four corners you can move around
to try and square things up:

80

It is of course better to attempt this before cropping the page.

Image Magick

If there is one indispensable program for making e-books out of scanned page images that
program is Image Magick. It is free software that runs on Windows, Linux, or the Macintosh.
Every Linux distribution includes it. For Windows and the Mac you can download it here:

http://www.imagemagick.org/script/index.php

Image Magick needs software called Ghostscript to create PDF's and you should install that
software first. Ghostscript comes with every Linux distribution and should be installed by
default. For Windows and the Mac you can download the install programs here:

http://pages.cs.wisc.edu/~ghost/

Click on the latest version and look for the installer for your operating system.

Image Magick is a little different from other graphics software because it does most of its
functions from the command line. It may seem odd that a program that works with images
does not have a graphical user interface, but there is a reason for that. Image Magick does its
most useful functions on groups of images, and the command line suits that kind of work better
than a GUI. Among the things Image Magick can be used for is rotating a group of images,
cropping a group of images, and making PDFs from a group of images. These functions can all be
done with the mogrify command.

81

http://www.imagemagick.org/script/index.php
http://pages.cs.wisc.edu/~ghost/

Batch Cropping

If you did a good (or reasonably good) job of keeping your book and camera in the same position
when you photographed the pages you may be able to do batch cropping, which will save you a
great deal of time and tedium. Batch cropping is a way to apply the same cropping dimensions
to many pages. Even if your photos are not perfectly aligned all the way through you might still
be able to batch crop them in multiple passes. I did this with my second book. Here is what
some pages looked like before cropping:

I copied a bunch of uncropped images to another directory which I called TestCropping. Next I
loaded the first picture in that directory into The GIMP and used the rectangle selection tool on
the Toolbox to select the area I wanted to crop the image to. I did not crop the image. Instead,
I had a look at the dimensions of the selected rectangle in the toolbox:

You should read these dimensions as:

Upper left corner of the rectangle has an X offset of 344 pixels
That corner has a Y offset of 400 pixels
The selected rectangle is 1268 pixels wide
The rectangle is 1940 pixels in height

If I want to apply the same crop to every image in the directory I can use the Image Magick
mogrify command, which updates a file in place:

mogrify -crop 1268x1940+344+400 *.jpg

82

When I did this I got these results:

The first few pages came out OK, so I copied them back to the original directory, overlaying the
uncropped files. Then I copied the remainder of the uncropped pictures to the TestCropping
directory and repeated the process. The images where batch cropping didn't work showed a bit
of the facing page so when I selected the rectangle for the rest of the pages I moved the left
side of the rectangle a bit away from the left edge of the page to avoid this. This time mogrify
did well on all the rest of the pages, with the exception of the inside of the right cover, which
had a beautiful illustration that really demanded manual de-skewing and cropping with The GIMP.
If you do batch cropping you can spend time on manual tweaking like that when it makes a real
difference to the end product.

Batch Rotation

If your pages are skewed you can do a batch rotation with mogrify as well. The time to do this
is before you combine left and right pages, because the pages on the same side of the book are
likely to be skewed the same amount or close to it. Use The GIMP to figure out how much
rotation you need, but don't actually do the rotation on the image. Instead, use a mogrify
command like this:

mogrify -rotate .9 *.jpg

This with rotate every JPEG in a directory .9 degrees clockwise. Just like when you rotate with
The GIMP, you want to rotate the complete image first, then crop.

Dealing with Focus Issues

More likely than not your digital camera will auto focus, with no option for manual focus. This
works just fine if the center of the page you're photographing has something the camera can
focus on. If the center of the page is blank the camera can't focus properly. Now if the whole
page is blank, no problem, because a cropped out of focus page does not look much different
than it would in focus. However, you may find yourself with a few pages that look like this:

83

You're going to have to photograph those pages again. This time, cut out a paragraph of text
from something you've printed out and put that slip of paper in the middle of the page, between
the page and the glass. This will give your camera something to focus on:

84

Well, that solved the focus problem. Now we have to use The Gimp to get rid of that slip of
paper. The first thing we do is to use the Select tool to select a blank area of the page just
above where the paper is. Then we copy the selection to the clipboard using the Copy option on
the Edit menu:

85

Now we do a Paste from the Edit menu. What that does is create a Layer which we can move
around with the Move tool. We can cover the slip of paper with this layer, then save the
image. This shows moving the layer in progress:

86

Combining Left And Right Pages

When you have all the pages in both left-hand and right-hand directories cropped it's time to
bring the pages together. If you paid attention to my warnings to clear your camera's memory
of pictures and photograph both sets of pages front to back you should have two directories
with pictures named something like

BoysAviation 001.jpg, BoysAviation 002.jpg ... BoysAviation nnn.jpg

What you need to do now is rename the right side pages to

BoysAviation 001a.jpg, BoysAviation 002a.jpg ... BoysAviation nnna.jpg

and the left side pages to

BoysAviation 001b.jpg, BoysAviation 002b.jpg ... BoysAviation nnnb.jpg

In Linux and probably on the Macintosh too there is a command rename which will do this quite
easily:

rename .jpg a.jpg *.jpg

This can be read as "for every file named ending with .jpg change the .jpg in the name to be
a.jpg".

For Windows you can try the Renamer utility which can be downloaded from:

http://www.albert.nu/programs/renamer/main.htm

This is what the Renamer utility looks like in action:

87

http://www.albert.nu/programs/renamer/main.htm

The Insert operation in the program allows you to insert text at a relative position in the file
name, and is just what we need.

Be aware that there are two versions of Renamer: the original and the unfortunately named
RenamerNG. You want the original. RenamerNG has some bugs, the most important of which is
that when you select files to be renamed they are not listed in ascending sequence. This makes
that version of the program useless for our purposes.

When you have the files in both directories renamed you can copy (not move) them into one new
directory. Before you do that, check to see if both original directories have the same number of
files in them. If they do, chances are you didn't miss or duplicate any pages when you
photographed them. If not, you'll need to figure out which pages are missing or duplicated,
correct that and rename files so that you have a complete set of pages in sequence from front
to back. There is no painless way to do this. As it happened, I missed three pages when I
scanned the left pages of my first book. The only way I could think of to make things right was
to rename each and every page with its page number, then see which ones were missing.

If you need to do this, the Windows Renamer program can help. It can do a great deal more
than simply insert a character in a file name. It can also remove the existing sequence number
from a file and replace it with a new one. You can start the number at any value and increment
it by any amount. If you use this on your left and right pages before combining them you should
be able to give each page a sequence number that matches its page number.

On Linux there are krename and pyrename. These should be included in your distribution.

When you have a complete set of pages in sequence back up your work to a CD. You've done a
lot of work and you don't want to lose any of it.

88

Cleaning Up Page Images

The pages of the Boy's Aviation book are showing signs of age (and a lack of white balance), and
it would be nice to clean them up a bit. As you can see in the illustration, some are dirty brown
and some are dirty gray.

I asked for suggestions on cleaning up the pages in the sugar-devel mailing list and got several,
plus I figured out a method on my own. My first thought was I wanted some sort of filter that
takes the darkest color on the page and makes it black and makes everything else white. It
turns out that The GIMP has such a filter, called Threshold, which is found on the Tools menu.
Running Threshold on the Table of Contents page gives this result:

89

This might do for some uses, especially if you're preparing pages for OCR (Optical Character
Recognition). It isn't much good for illustrations. Several people suggested that I convert the
image to Grayscale (Mode under the Image menu) and use the Brightness-Contrast dialog
(found in the Tools menu) to lighten the page and darken the text to come up with a cleaned up
page image.

You do not need to edit each page with The GIMP to pretty it up. Once you figure out what you
want to do you can change the pictures as a group from the command line using Image Magick.
The changes you do with Image Magick's mogrify command cannot be undone, so before you use
it copy all your images into another directory and work with that.

I ran the following command on my images:

mogrify -modulate 150,0,0 *.jpg

This cranked away for about an hour and produced the following results:

90

 The command as shown converts the file to grayscale and increases the brightness to 150%.
After it's done some pages are still darker than others, but all are quite readable:

91

Other than some tolerable skewing the pages look good. I would be entirely justified in making a
PDF with these images and considering my work done. Of course, if we're going to submit to the
Internet Archive we'll want to replace the now grayscaled images of our front and back covers
with the original full color versions.

If you look at these images closely you'll see that part of the page is brighter than the rest of it.
This is where the desk lamp I used shined brightest on the page. To get a good quality image
you really need to have more than one light shining on the page. After I had done a few books
and had grown frustrated with the dingy color of my photographed pages I invested in a couple
of clamp-on desk lamps to shine light on the either side of the page, as well as directly from
above. This seems to have helped, and the lamps were only about five dollars apiece at
Menard's. If post-processing does not give you the page color you want, consider investing in
improved lighting.

THE EASIER ROAD: SCAN TAILOR

You can use Scan Tailor on Windows or on Linux. For Windows there is the usual install
program. For Linux you will need to compile from source. You can get both here:

http://scantailor.sourceforge.net/

Scan Tailor is an amazing program that can do all of the following to the images you originally
captured with your camera:

92

http://scantailor.sourceforge.net

Rotate the images clockwise or counter clockwise
If you use a flatbed scanner, split 2-up scans into separate pages.
Calculate the skew of your page so it can be corrected
Identify the content of your page, whether it be a block of text or an illustration or both
Clean up the content portion of the page. For blocks of text it will do the equivalent of the
Threshold filter in The GIMP. For photos it will brighten the image.
De-skew the content portion of the page.
Place the content of the page in a new, empty page with the margins you specify.
Create .tiff files in an output directory with all these corrections made, leaving the original
images untouched.

In other words, you start with unrotated pictures of a book resting against a cardboard box and
in one operation you get pages that look like this:

Here is a sample page for comparison purposes:

93

The biggest difference between the two methods is that with the manual method you try to
identify the boundaries of the page in the photo and crop to that. Scan Tailor doesn't care about
the boundaries of the page; it's more interested in the boundaries of the content on the page.
Once it knows that it can de-skew that content and place it on a new page.

In the screen shot below you can see that there are six tasks that Scan Tailor performs in
sequence. Split Pages doesn't apply in my situation; it would make sense if I was using a flatbed
scanner to scan two pages at a time, for instance. Select Content must be run before you can
generate output pages. As you can see in the screen shot it can easily find the content area on
a page. It occasionally messes up a picture, but you can use the Manual button to correct this.

94

Page Layout is used to specify the margins of the page where content will be placed. The
important thing to remember here is that Scan Tailor assumes that all pages given to it will have
these margins. If the inside lining of the book cover has illustrations that go to the edge of the
page that can mess up the way the rest of the pages are formatted, so it is best not to give
such pages to Scan Tailor. Instead, you can do these pages by hand or simply don't include them
in your e-book.

Output creates the pages as TIFF files in a separate directory. When you create output you
have a choice of three formats:

95

Black and White
Grayscale/Color
Mixed

If your book is a combination of text and images choose Mixed. This will detect which pages are
just text and make them black and white, and make the rest color as needed.

96

Some examples will give you an idea of what to expect. This is a page rendered in Black and
White.

97

This is the same page in color with White Margins selected. You can choose not to have white
margins but you would not like the result. This is a good choice if the paper the book is printed
on is acid-free and a nice color, clearly not the case here:

98

If you check the "Equalize Illumination" check box in Color mode you'll get this:

"Mixed" will try to give you a color or grayscale image with white borders and equalized
illumination when it needs to and black and white for pure text pages. This is a reasonably good
option, but for the book shown above (Thirteen Women by Tiffany Thayer) Black and White is
clearly the best choice.

Scan Tailor has a User Guide here:

99

http://sourceforge.net/apps/mediawiki/scantailor/index.php?title=User_Guide

100

http://sourceforge.net/apps/mediawiki/scantailor/index.php?title=User_Guide

12. MAKING PDF'S

CREATING PDFS FROM PAGE IMAGES

Suppose you have a book published in 1922 or earlier that you
want to donate to the Internet Archive. They require that
submissions be in PDF format. For now, assume that you have
created images in JPG format for all the pages and they are named
sequentially. You can make a PDF out of them using Image Magick.

This is the command to create a PDF from a set of sequentially named images:

convert -verbose *.jpg my_e-bookname.pdf

This will take all the JPEG files in the current working directory and put them into a PDF. If you
have a very short book, like a children's book, this is all you need. If you try to run this on a
book with hundreds of pages it will fail with an out of memory error (or on Linux a segmentation
fault). The way around that is to make a PDF out of each page image, then join those PDFs
together. We use a different Image Magick command to make the PDFs:

mogrify -verbose -format pdf *.jpg

To join the PDFs together we need another piece of software, called pdftk. You can download
that here:

http://www.pdfhacks.com/pdftk/

The command you use to join the PDFs is this:

pdftk *.pdf cat output BookTitle.pdf

When you run this you may see many warning messages about the possibility of memory leaks.
These messages should be safe to ignore.

Here is a PDF I made this way, viewed in Acrobat Reader:

MAKING YOUR PDF'S SMALLER

101

http://www.pdfhacks.com/pdftk/

If you created a PDF from page images you may be a bit dismayed at how large the file is. One
hundred and fifty megabytes for a three hundred page book is not uncommon.

If you look at the files available for each book at the Internet Archive, you'll see entries like this:

worksofjulesvern02vern.djvu 9686664
worksofjulesvern02vern.pdf 21892098
worksofjulesvern02vern_bw.pdf 17715851
worksofjulesvern02vern_jp2.zip 170943817
worksofjulesvern02vern_orig_jp2.tar 253030400

We can interpret this as follows:

The uncropped images from the book scanner take up about 253 megabytes.
The cropped images take up about 170 megabytes.
The finished PDF takes up about 21 megabytes.
A black and white version of the same PDF is a little under 18 megabytes.
The DjVu version is smallest of all, at 9.6 megabytes.

How is this possible? I couldn't figure it out myself so I sent an email to the authors of the
software the Internet Archive uses and it got forwarded on to the person who developed the
PDF creating software. He was kind enough to explain the whole process, which I will paraphrase
and simplify here.

The main secret of the process is that it divides each page image into three separate images
which are combined to create the page you see in the PDF. These images are:

The text in the book, stored as a black and white image at high quality. Since there are
only two colors used even a high quality image takes up little space.
The image layer, which is "downsampled" to a lower resolution than the original photograph
to save space. On a computer screen the difference between the original image and the
downsampled image is not noticeable.
The page background, which is the bulk of the page area, is stored very highly
compressed. The effect of this is to make the page background a more uniform color than
the original book had, but that is not a problem.

If you read a PDF like the book Abroad which has highly decorated pages you can actually see
the three layers coming into view separately.

This process is more complex than anything the home e-book maker would attempt. That does
not mean that we cannot make our e-books dramatically smaller without losing an objectionable
amount of quality, but we'll have to use simpler techniques. The key is to make the original
page images smaller and more highly compressed. Once you do that you can make a PDF much
smaller than the ones we can create with the original images.

If you're preparing the e-book for donation to the Internet Archive they're going to want the full
sized PDF. They will of course prepare a new PDF which is smaller and has OCR'd text behind
each page.

If the book is not going to the Internet Archive, you'll need to shrink the pages images yourself.

OPTIMIZING PAGE SIZES

One thing you can and should do when creating e-books from images is to first resize the pages
so they are no larger than your screen can display. On an XO laptop the screen width is 1200
pixels. The page images I created with a Kodak 5 megapixel camera are a little over 1200 pixels
wide once the images are rotated and trimmed. The difference is probably not worth bothering
with. Pictures taken with an 8 megapixel camera are a different story.

102

The width of the screen is the important factor when choosing what size your images should be,
since pages scroll vertically. Load one of your images into The GIMP or Picasa to see how wide it
is in pixels. Figure out what width in pixels you want your images to be (the screen width of the
XO laptop is 1200 pixels), then run the mogrify command from Image Magick on them like this:

mogrify -resize 1200 -format jpg -quality 80% -verbose *.jpg

Note that mogrify will update your images in place, so you definitely want to back up the
originals to CD first as well as copy them to a new directory. You may want to experiment with
the -quality setting. The JPEG format does what is known as "lossy" compression. This means it
gets a smaller file size by removing detail from the picture.

This might be hard to imagine, but suppose you have a photograph. JPEG's can display 16.7
million colors but the human eye can't always distinguish them. If there is a blue sky in the
photograph the sky won't be all the same color. Say there are 1,000 shades of blue in the sky.
If you averaged out the colors so that only 256 shades were used you might not be able to tell
the difference, but the amount of information in the picture would go down noticeably, resulting
in a much smaller image.

80% quality will generally give good results, but you should experiment. You might experiment
with image sizes too. Comic book zips rarely contain images wider than 900 pixels, yet they
look good enlarged.

Space savings can be significant. The original files for this book took up 173.9 megabytes. The
resized files take up 69.3 megabytes. That's not as good as the Internet Archive does, but it's a
decent improvement. You can experiment with different quality levels to see how much you can
compress your JPEG's without hurting quality. You might use a lower quality for text pages and a
higher one for color illustrations, or vice versa.

The resized PDF looks as good as the original:

103

If you want to make your book still smaller you can make a DjVu document out of the resized
images.

Of course if you are really serious about making smaller PDF's you'll want to do OCR on the
scanned pages to get plain text, then use your word processor to make a PDF out of that text.
Doing that will be covered in the chapter on Plain Text files.

Correcting Page Sizes

It is very likely that your cropped page images will not all be the same size. Quite often this is
not a problem, but sometimes your PDF's will look like this when you try to read them:

104

Some of the books scanned by Microsoft and Google and uploaded to the Internet Archive have
this problem. You can fix it by making all your page images the same width and re-creating the
PDF. The mogrify command used to resize images in this chapter can be used for this, with
some simple modifications. You need to change the -resize parameter to something slightly
smaller than your page images. If most of your pages are 1295 or so, make the width 1200. You
can leave off the -quality parameter (which will leave the original quality of the image
unchanged). This will make all your pages the same width, and the PDF you make from those
images should not have the problem shown above.

105

13. MAKING CBZ'S

CREATING THE ARCHIVE

The CBZ format format is the easiest one of all to create. All you
need to do is name your image files in sequence and put them in a
Zip archive using a program like WinZip or 7-Zip. I recommend 7-
Zip because it is free to download and use, plus it can do things
that WinZip cannot, like extract files from RAR archives. If you
want to convert Comic Books in CBR format to CBZ 7-Zip can do
it.

You can download 7-Zip here:

http://www.7-zip.org/

Here is 7-Zip in action. As you can see I'm giving my Zip archive the .cbz suffix.

106

http://www.7-zip.org

In Linux you can create CBZ's from the command line using the zip command:

 zip ArabianNights.cbz *.jpg

107

14. MAKING DJVU'S

INTRODUCTION

Writing this book has been a real education for me, and I learned a
few things I did not expect to learn. The most surprising thing I
learned is that DjVu does not always give a smaller file size than
PDF! Since the only reason to prefer DjVu to PDF is to get a
smaller file that uses less memory, it is important to understand
when PDF will give the smaller file size. Making a DjVu is more
work than making a PDF, so you need to know when it is a waste of your time.

In the chapter on creating book scans, I talk about two methods of doing them. The first
method (entitled "The Road Less Travelled") preserves the look of the original page, including the
color of the paper, the margins used, etc. The second method (entitled "The Easier Road: Scan
Tailor") looks for pages with nothing but text and makes these pages have pure black letters on
a pure white background.

If you do the first method, DjVu can help give you smaller file sizes. Here is a comparison:

 87606063 BoysAviationJPGs.djvu
182866779 BoysAviationJPGs.pdf

This is from a Linux directory listing showing a PDF of a book made with the method that
preserves the look of the original pages. The .djvu file is less than half as large as the PDF. Now
let's look at files created with the Scan Tailor method, which preserves the content of the pages
but changes their look:

121069444 BoysAviationScanTailor.djvu
 56796427 BoysAviationScanTailor.pdf

A couple of surprising things here. The .djvu file is considerably larger than the PDF (but still
smaller than the other PDF). What's really surprising is that the PDF made using the Scan Tailor
method is the smallest file of the four, by a significant amount.

How to explain this? Compression looks for redundant information and replaces the raw
information with a description of that information. In "lossy" encoding schemes compression
looks for information that would not be missed and discards it to make the file smaller. When
you have pages with pure black text on pure white backgrounds that are already compressed,
an attempt to compress such a file even further might make the file larger than it was to begin
with.

On the other hand, a book that has lots of illustrations may produce a larger file using Scan
Tailor than using the other method. The third book I scanned had illustrations on almost every
page, mixed in with the text. Because Scan Tailor could not save such pages as pure black and
white images the resulting PDF was twice the size of the version made the other way. (It must
be said that Scan Tailor did a beautiful job of laying out the pages. Smaller file sizes are not the
only reason to use Scan Tailor).

If this explanation doesn't make sense to you, just remember that if you use the Scan Tailor
method of preparing your page images and your book has only a few illustrations don't bother
with making a DjVu file. A PDF will do just fine.

If you resize and compress pages not created with Scan Tailor to create a PDF you can still get a
smaller file using DjVu. Here is an example:

49519200 ArabianNights.djvu
69192729 ArabianNights.pdf

108

The DjVu version is 20 megabytes smaller.

DJVU LIBRE

To make DjVu files you need to install DjVu Libre. This software comes with every Linux
distribution. Users of Windows and Macintosh may download their versions here:

http://djvu.sourceforge.net/index.html

There are two command line programs in this package we need to use. The first is named c44,
and it's job is to convert our .jpg files into .djvu files with improved compression. You can run it
on a single file like this:

c44 filename.jpg

Regrettably there is no way to run c44 on a group of JPEG's; each invocation of the program
converts just one file. Fortunately, there is a way to run c44 on every JPEG in a directory
without typing in the command over and over. You can use a simple Python program like this
one, which should be put in a file named makedjvus.py:

#! /usr/bin/env python
import glob
import getopt
import sys
import subprocess

def make_djvus(filename):
 """This function is called
 for each image file."""

 subprocess.call(["c44", filename])
 print 'filename', filename
 return

if __name__ == "__main__":
 try:
 opts, args = getopt.getopt(sys.argv[1:], "")
 if len(args) == 1:
 print 'using glob'
 args = glob.glob(args[0])
 args.sort()
 i = 0
 while i < len(args):
 make_djvus(args[i])
 i = i + 1
 except getopt.error, msg:
 print msg
 print "This program has no options"
 sys.exit(2)

When you have this installed on your system, run it like this:

python makedjvus.py *.jpg

The program should be in your system PATH and your current directory should be the one with
the JPEG's to convert.

When you have all the files converted it's time to use the second command line program, djvm,
to combine the .djvu's into a complete document, also with the suffix .djvu:

djvm -c BookTitle.djvu *.djvu

The -c option specifies the document file to create and everything after that is file names to
include in the document.

Here is my .djvu file, being viewed with DJView3 in Linux:

109

http://djvu.sourceforge.net/index.html

110

15. MAKING PLAIN TEXT FILES

OPTIONS FOR CREATING PLAIN TEXT
FILES FROM SCANNED BOOK PAGES

Some teachers have expressed an interest in scanning in textbook
pages and creating text files from them. Sugar users may wish to
do this because plain text files support Text To Speech with word
highlighting, which may be an aid to students with reading
problems. You may also wish to create texts to donate to
Project Gutenberg, or make an EPUB out of the book.

There is more than one way to create a plain text file from a book, and which one will be the
least work will depend on how quickly you need the book and how you plan to distribute it. One
option you have is to donate a physical copy of a public domain book to Distributed
Proofreaders. They will saw the spine off the book, scan it with a sheet-feed scanner, do OCR
on it, proof read it, and submit it to PG. The whole process will take several months and will
destroy the book.

You could also scan the book yourself and submit the scanned page images to the Distributed
Proofreaders Scanning Pool, where one of their volunteers will do OCR on the page images and
submit it for proofreading, again by volunteers. This will also take many months but the book
won't be destroyed.

You can also do the OCR yourself, then submit your page images plus the text files created by
OCR (one text file per page), plus high quality images of any illustrations in the book, to the
Distributed Proofreaders FTP server, where it will wait in the queue to be proofread.
Proofreading will take a few months, but your contribution might get in the queue sooner. (Then
again it might not. See the chapter on donating books to Project Gutenberg to understand
better why you might not want to do this).

Finally, you may have a public domain book that you do want to donate to PG, but you don't
want to wait the months that DP will take to thoroughly proofread it. This means that you'll
want to prepare page images and text files like you would for the DP site but use them to do
you own proofreading to create something that can be submitted to PG directly. This is the
most work of the lot, but this chapter will show you how to minimize the effort.

111

OCR SOFTWARE

The most commonly used program for doing Optical Character Recognition is a commercial
product called ABBYY Fine Reader. A version of this comes with many flatbed scanners. The
Professional version has features that make it easier to do OCR on a complete book. The
Internet Archive uses this product, and Distributed Proofreaders uses and recommends it. It is,
however, not cheap. The current Professional edition will run you $400. For that reason I will
not be recommending it. I think you can get results every bit as good with free software.
ABBYY Fine Reader does have a free 15 day trial for its products; the program stops working
after 15 days or 50 pages. That should be more than enough to let you decide if it's worth the
money. The Distributed Proofreaders site has many suggestions on how to use this product.

If you're a Windows user I recommend FreeOCR. You can download it here:

http://www.paperfile.net/

It looks like this:

The procedure to use this is to open a PDF or a JPEG file for a single book page. Press the OCR
button and text for the page will be copied to the window on the right, where you can correct it.
If you open a PDF you can navigate from page to page and do OCR on each one. As you do each
page the text will be appended to the window on the right. When you're done you can save your
work to a text file or copy it to the clipboard.

Depending on the font used in the book, OCR can be quite accurate:

112

http://www.freeocr.net
http://www.paperfile.net

There is no way to OCR some pages of a PDF, save your work, exit, restart the program and
pick up where you left off. Since that's exactly what you need to do to make a plain text file
out of an entire book you will want to have a word processor open so you can copy text from
the clipboard to the word processor and save it as a text document. That way you can resume
FreeOCR, resume your word processor, load the PDF into Free OCR, find the page where you left
off, then continue.

Another possibility is to create a separate text file for every page. If you do this, there are tools
that can help you with proofing and correcting those pages.

FreeOCR is not available for Linux, but the OCR engine that it uses, called Tesseract, can be
used in Linux from the command line. It should be included with your Linux distribution or you
can get it here:

http://code.google.com/p/tesseract-ocr/

Tesseract only works on individual, uncompressed TIFF files, and they must be named with the
suffix .tif (not .tiff!). If the book pages you need to OCR are JPEG's you can use Image Magick
mogrify to create TIFFs from them:

mogrify -format tiff *.jpg

will create TIFFs for every JPEG in the current working directory. Again, Tesseract does not like
these files to have the suffix .tiff, which is what Image Magick will give them. You can change
this to .tif with the following command:

rename .tiff .tif *.tiff

Then you can run tesseract on each one with the command:

tesseract filename.tiff basefilename

for example:

tesseract BoysAviation\ P135.tif BoysAviation\ P135

will create a file named BoysAviation P135.txt which should have the OCR'd text in it. When I
tried this on Fedora 10 I just got a file full of gibberish. I did better with Fedora 11:

$ tesseract BoysAviation\ P135.tif BoysAviation\ P135$ tesseract BoysAviation\ P135.tif BoysAviation\ P135
Tesseract Open Source OCR Engine
$ less BoysAviation\ P135.txt$ less BoysAviation\ P135.txt
FIGHTING THE FLYING CIRCUS 135

113

http://code.google.com/p/tesseract-ocr/

heads and exploded with their soft ’plonks, releasing varicolored
lights which floated softly through this epochal night until they
withered away and died. Star shells, parachute llares, and
streams of Very lights continued to light our way through
an aerodrome seemingly thronged with madmen. Everybody
was laughing-—drunk with the outgushing of their long p€¤t—up
emotions. "1’ve lived through the war!" I heard one whirling
Dervish of a pilot shouting to himself as he pirouetted alone
in the center of a mud hole. Regardless of who heard the
inmost secret of his soul, now that the war was over, he had
retired off to one side to repeat this fact over and over to
himself until he might make himself sure of its truth.
Another pilot, this one an Ace of 27 Squadron, grasped
me securely by the arm and shouted almost incredulously,
"We won’t be shot at any m0re!" Without waiting for a reply `
he hastened on to another friend and repeated this important
bit of information as though he were doubtful of a complete
understanding on this trivial point. What sort of a new world
will this be without the excitement of danger in it? How
queer it will be in future to fly over the dead line of the silent
Meuse—that significant boundary line that was marked by
Arch shells to warn the pilot of his entrance into danger.
How can one enjoy life without this highly spiced sauce of
danger? What else is there left to living now that the zest
and excitement of lighting aeroplanes is gone? Thoughts such
as these held me entranced for the moment and were after-
wards recalled to illustrate how tightly strung were the nerves
of these boys, of twenty who had for continuous months been
living on the very peaks of mental excitement.

You can run tesseract for each page in the book (or use a Python program to do it) then
combine them all together with this command (in Linux or the Macintosh):

 cat *.txt > BookTitle.txt

or this command for Windows:

 type *.txt > BookTitle.text

Note that in Windows you don't want the concatenated file to have the same suffix as the files
you are concatenating. If you do then the type command will try and append your target file to
itself. This is not a problem with cat on Linux. Once the file is created you can rename it as you
like.

Here is the code for a Python program named runtesseract.py that will run Tesseract for every
TIFF image in a directory:

#! /usr/bin/env python

import glob
import getopt
import sys
import subprocess

def run_tesseract(filename):

 filename_tuple = filename.split('.')
 filename_base = filename_tuple[0]
 subprocess.call(["tesseract", filename, filename_base])
 print 'filename', filename
 return

if __name__ == "__main__":
 try:
 opts, args = getopt.getopt(sys.argv[1:], "")
 if len(args) == 1:
 print 'using glob'
 args = glob.glob(args[0])
 args.sort()
 i = 0
 while i < len(args):
 run_tesseract(args[i])
 i = i + 1
 except getopt.error, msg:
 print msg
 print "This program has no options"
 sys.exit(2)

114

You run this program like this:

 python runtesseract.py *.tif

AUTOMATICALLY FIXING COMMON PROBLEMS WITH
GUIPREP

Before you combine all your separate one-page text files into one large file you might want to
use the guiprep utility on them. Guiprep is a program used by the Distributed Proofreaders
project to prepare texts and page images for use on their website. It can find "scannos"
(common scanning errors) in your files and fix them. It can also do things like deleting the first
line in each file, which could be a page heading, and join hyphenated words split across lines.

Scannos are mistakes that OCR software make consistently. For instance, OCR software will
confuse a "W" with "V/". Guiprep can identify lots of such patterns and fix them. You can get
the program here:

http://home.comcast.net/~thundergnat/guiprep.html

This is what the program looks like:

If you use this program you should be aware that some of its options expect that the files will be
prepared by ABBYFineReader, and you'll need to avoid those options. ABBYY Fine reader can do
a couple of things that Tesseract cannot:

115

http://home.comcast.net/~thundergnat/guiprep.html

It can tell the difference between bold text, italicized text, and normal text and save
scanned text in Rich Text Format files, which have special markup for that formatting.
It can figure out where paragraphs begin and end, which makes it easier for Guiprep to
figure out how to de-hyphenate text.

Tesseract just saves plain text files with no attempt to preserve text formatting or paragraphs.
As a result of this when you run Guiprep you want to have your text files in a subdirectory
named text, and you want to avoid the options to extract formatting and do de-hyphenating.

One way Guiprep can do de-hyphenating is to create two separate directories for your text files:
textw and textwo. The first one contains text files with line breaks and the second contains
text files without line breaks (but with paragraph breaks). Guiprep compares these two versions
of your files and does de-hyphenating.

Tesseract cannot produce text files without line breaks, so don't bother creating textw and
textwo directories. Just put your text files in a directory named text.

Even without these functions Guiprep still has much to offer.

PROOF READING INDIVIDUAL PAGES

There are a couple of approaches to proofing your text. You can make one big text file and
proof it with the book close by, or you can proof individual pages, then combine them. The
advantage to proofing one page at a time is that you can use a utility program to view the
OCR'd text and the page image it came from on the same screen, like this:

The OCR'd text is shown in the Courier font because that font avoids the problem of letters that
look similar to each other. In some fonts, for instance, the first three letters of the word
"Illustration" (where the "i" is capitalized) look very similar. The text can't just look right, it has
to be right.

When you move from page to page, the page you came from is saved to disk.

Where can you get such a massively useful utility? Glad you asked. This is another one of my
Python scripts, which I like to call proofer.py. The code is here:

#! /usr/bin/env python
proofer.py

import glob
import sys
import os
import gtk
import getopt
import pango

116

page=0
IMAGE_WIDTH = 600
ARBITRARY_LARGE_HEIGHT = 10000

class Proofer():

 def keypress_cb(self, widget, event):
 keyname = gtk.gdk.keyval_name(event.keyval)
 if keyname == 'F10':
 self.font_increase()
 return True
 if keyname == 'F9':
 self.font_decrease()
 return True
 if keyname == 'Page_Up' :
 self.page_previous()
 return True
 if keyname == 'Page_Down':
 self.page_next()
 return True
 return False

 def font_decrease(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size - 1
 if font_size < 1:
 font_size = 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def font_increase(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size + 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def page_previous(self):
 global page
 self.save_current_file(self.filenames[page])
 page=page-1
 if page < 0: page=0
 self.read_file(self.filenames[page])
 self.show_image(self.filenames[page])

 def page_next(self):
 global page
 self.save_current_file(self.filenames[page])
 page=page+1
 if page >= len(self.filenames): page=0
 self.read_file(self.filenames[page])
 self.show_image(self.filenames[page])

 def read_file(self, filename):
 "Read the text file"
 text_filename = self.find_text_file(filename)
 self.window.set_title("Proofer " + filename)
 etext_file = open(text_filename,"r")
 textbuffer = self.textview.get_buffer()
 text = ''
 line = ''
 while etext_file:
 line = etext_file.readline()
 if not line:
 break
 print line
 text = text + unicode(line, 'iso-8859-1')
 text = text.replace("'I`", 'T')
 text = text.replace("'|`", 'T')
 text = text.replace("l`", 'f')
 text = text.replace("I`", 'f')
 text = text.replace("t`", 'f')
 text = text.replace(" ll", ' H')
 textbuffer.set_text(text)
 self.textview.set_buffer(textbuffer)
 etext_file.close()

 def find_text_file(self, filename):
 filename_tuple = filename.split('.')
 text_filename = filename_tuple[0] + '.txt'
 return text_filename

117

 def save_current_file(self, filename):
 text_filename = self.find_text_file(filename)
 f = open(text_filename, 'w')
 textbuffer = self.textview.get_buffer()
 text = textbuffer.get_text(textbuffer.get_start_iter(),
 textbuffer.get_end_iter())
 try:
 f.write(text)
 finally:
 f.close
 return True

 def show_image(self, filename):
 "display a resized image in a full screen window"
 scaled_pixbuf = gtk.gdk.pixbuf_new_from_file_at_size(filename,
 IMAGE_WIDTH, ARBITRARY_LARGE_HEIGHT)
 self.image.set_from_pixbuf(scaled_pixbuf)
 self.image.show()

 def destroy_cb(self, widget, data=None):
 self.save_current_file(self.filenames[page])
 gtk.main_quit()

 def main(self, args):
 self.filenames = args
 self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)
 self.window.connect("destroy", self.destroy_cb)
 self.window.set_title("Proofer " + args[0])
 self.window.set_size_request(1200, 600)
 self.window.set_border_width(0)
 self.scrolled_window = gtk.ScrolledWindow(
 hadjustment=None,
 vadjustment=None)
 self.scrolled_window.set_policy(gtk.POLICY_NEVER,
 gtk.POLICY_AUTOMATIC)
 self.textview = gtk.TextView()
 self.textview.set_editable(True)
 self.textview.set_wrap_mode(gtk.WRAP_WORD)
 self.textview.set_cursor_visible(True)
 self.textview.connect("key_press_event",
 self.keypress_cb)
 self.font_desc = pango.FontDescription("monospace 12")
 self.textview.modify_font(self.font_desc)
 self.scrolled_window.add(self.textview)
 self.read_file(args[0])
 self.textview.show()
 self.scrolled_window.show()
 self.window.show()

 self.scrolled_image = gtk.ScrolledWindow()
 self.scrolled_image.set_policy(gtk.POLICY_NEVER,
 gtk.POLICY_AUTOMATIC)
 self.image = gtk.Image()
 self.image.show()
 self.show_image(args[0])
 self.scrolled_image.add_with_viewport(self.image)

 self.hbox = gtk.HBox()
 self.hbox.add(self.scrolled_window)
 self.hbox.add(self.scrolled_image)
 self.hbox.show()

 self.window.add(self.hbox)
 self.scrolled_window.show()
 self.scrolled_image.show()
 self.window.show()

 gtk.main()

if __name__ == "__main__":
 try:
 opts, args = getopt.getopt(sys.argv[1:], "")
 if len(args) == 1:
 print 'using glob'
 args = glob.glob(args[0])
 args.sort()
 Proofer().main(args)
 except getopt.error, msg:
 print msg
 print "This program has no options"
 sys.exit(2)

118

This program runs on Windows, but is somewhat troublesome to install because it needs PyGTK
(http://www.pygtk.org/downloads.html). You should be able to install PyGTK using Mac Ports.

You can use FreeOCR to do pretty much the same kind of side-by-side proofing on Windows, and
it is easier to install.

This program assumes that you have just run Guiprep on the files, and that your text files are in
the same directory as your image files. You make this directory your current working directory
and run proofer.py like this:

python proofer.py *.png

If your image files are JPEG's of TIFF's you would change the argument accordingly. proofer.py
does not care what kind of image files you have. It will load the first file in the directory into the
right pane, then load the matching text file into the left pane. You can navigate from page to
page using the Page Up and Page Down keys. You can make the text font smaller or larger by
using F9 and F10. When you move to a new page or quit the program the text of the page you
were working on gets saved.

Proofer also has code to correct "scannos" I have found in my own books that guiprep doesn't
handle. If you know a little Python you can easily add your own correction logic.

FORMATTING A PLAIN TEXT FILE

When you have loaded your OCR text file into a word processor what you have is the lines of
text on each page, with line endings at the end of each line. What you would like to have is text
word-wrapped into paragraphs, with line endings used only to separate paragraphs. It is possible
to remove all of the line endings in the document, but to do that you need to give your word
processor a way to tell the difference between the end of a line and the end of a paragraph. If
you don't, you'll just put all the text in the book into one enormous paragraph.

The way you can do that is by putting a blank line between paragraphs and also between
anything you don't want to wrap together. Consider this table of contents:

CONTENTS

THE STORY OF THE AIRSHIP Capt. T. J. C. Martin

THE FIRST ATTEMPT AT THE NORTH POLE——CAPTAIN
 ANDREE AND HIS BALLOON

THE BALLOON IN WAR

THE WELLMAN ATTEMPT AT THE POLE . Walter Wellman

THE BIRTH AND GROWTH OF THE AEROPLANE

WILBUR AND ORVILLE WRIGHT Charles C. Turner

THE FIRST AEROPLANE FLIGHT Jessie E. Horsfall

SENSATIONS OF FLIGHT—LEARN1NG TO FLY

THE ARMY OF YOUTH

FIGHTING THE FLYING CIRCUS . . . Eddie Rickenbacker

THE GAUNTLET OF FIRE By a British Airman

STUNT FLYING Capt. T. J. C. Martyn

How TUBBY SLOCUM BROKE HIS LEG
 James Warner Bellah

L1NDBERG’S START FOR PARIS Jessie E. Horsfall

LINDBERGH TELLS OF HIS TRIP . . . Charles A. Lindbergh

CHAMBERLIN'S FLIGHT TO GERMANY . Jessie E. Horsfall

119

http://www.pygtk.org/downloads.html

BYRD’S FLIGHT OVER THE NORTH POLE . . Floyd Bennett

COLUMBUS OF THE AIR Augustus Post

"THE KID" Victor A. Smith

DOWN TO THE EARTH IN ’CHUTES
 Lieut. G. A. Shoemaker

SIR HUBERT WILKINS—-—HIS ARCTIC EXPEDITIONS
 A. M. Smith

THE "BREMEN'S" FLIGHT TO AMERICA . Jessie E. Horsfall

Before I reformatted it, there were no blank lines between each entry, and text that wrapped to
the second line was not indented. While on the subject of tables of contents, remember to
remove any page numbers from the contents. It's a safe bet that those numbers will not
correspond to the pages in your new document.

The other things you should do are remove any text representing page headers or footers, plus
any gibberish resulting from attempting to OCR an illustration.

One thing that will make your work go much faster is to use a text editor instead of a word
processor for this formatting, then use the word processor only for those functions where it is
really needed. In Windows Notepad is a text editor but it can't handle files as large as a whole
book. On Linux I use gedit, and you can get Windows and Macintosh versions of that editor
here:

http://projects.gnome.org/gedit/screenshots.html

The reason to prefer a text editor over a word processor for this work is that a text editor uses
less memory and will respond quickly to any editing you do. A word processor doing the same
work will feel sluggish.

120

http://projects.gnome.org/gedit/screenshots.html

Another possibility for a text editor is guiguts, which was created by the author of guiprep.
It's a text editor that can run external utilities like spell checkers, gutcheck (a utility used to
check Project Gutenberg e-texts for proper formatting), jeebies (another utility that specifically
looks for "he" when "be" is meant), etc. It can run on Windows or Linux. Guiguts is especially
useful for preparing submissions to Project Gutenberg. It can rewrap selected paragraphs to the
line size that PG uses, rewrap blocks of text to create indented block quotes, insert HTML tags
into plain text files to give you a starting point for making an HTML version of a Plain Text file,
and more. You can download guiguts here:

http://home.comcast.net/~thundergnat/guiguts.html

This is what it looks like in action:

When you install guiguts on Windows you'll find that the gutcheck and jeebies utilities are
included, compiled and ready to go. For Linux and Mac OS the source code for both utilities is
included and you'll need to compile it like this:

gcc -o gutcheck gutcheck.c
gcc -o jeebies jeebies.c

You'll need to use an option in the Prefs menu to tell guiguts where these two programs are
installed before you can use them. You can also run them from the command line:

gutcheck BigBookOfAviationForBoys.txt
jeebies BigBookOfAviationForBoys.txt

Once you have the blank lines between paragraphs and the worst of the gibberish removed, you
may want to convert text with line endings at the end of each line into text in paragraphs.
(Project Gutenberg files must have line endings on each line, but if you aren't planning on donating
your texts there you'll find the text without line endings easier to work with). If you have MS
Word you can try this suggestion from the Project Gutenberg website:

121

http://home.comcast.net/~thundergnat/guiguts.html

Edit / Replace / Special and choose Paragraph Mark twice (or, from replace, you can
type in ^p^p to get two Paragraph Marks) and replace with @@@@. Replace All. This
saves off real paragraph ends by marking them with a nonsense sequence.
Now Replace one Paragraph Mark (^p) with a space. Replace All. This removes the line-
ends.
Finally, replace @@@@ with one Paragraph Mark. Replace All. This brings back the
Paragraph Ends.

If you do not have MS Word, you can run a simple Python script against the text file to remove
the extra line endings. This script, called pgconvert.py, is similar to the one built into the Read
Etexts Activity that converts Project Gutenberg files into files without extra line endings. The
key difference is that Tesseract creates text files where the line ending is a single character,
whereas Project Gutenberg uses two characters at the end of each line. The script below would
need to be modified to work with Project Gutenberg texts.

#! /usr/bin/env python

import getopt
import sys

This is a script to take the a file in PG format and convert it to a text
file that does not have newlines at the end of each line.

def convert(file_path, output_path):

 pg_file = open(file_path,"r")
 out = open(output_path, 'w')
 previous_line_length = 0
 paragraph_length = 0
 conversion_rejected = False

 while pg_file:
 line = pg_file.readline()
 outline = ''
 if not line:
 break
 if len(line) == 1 and not previous_line_length == 1:
 # Blank line separates paragraphs
 outline = line + '\r'
 paragraph_length = 0
 elif len(line) == 1 and previous_line_length == 1:
 outline = line
 paragraph_length = 0
 elif line[0] == ' ' or (line[0] >= '0' and line[0] <= '9'):
 outline = '\r' + line[0:len(line)-1]
 paragraph_length = 0
 else:
 outline = line[0:len(line)-1] + ' '
 paragraph_length = paragraph_length + len(outline)
 out.write(outline)
 previous_line_length = len(line)
 pg_file.close()
 out.close()
 print "All done!"
 if conversion_rejected:
 return False
 else:
 return True

if __name__ == "__main__":
 try:
 opts, args = getopt.getopt(sys.argv[1:], "")
 convert(args[0], args[1])
 except getopt.error, msg:
 print msg
 print "This program has no options"
 sys.exit(2)

You run this script like this:

python pgconvert.py filename.txt newfile.txt

122

The new file will be converted, and the file you use as input will be left alone. The next thing
you'll want to do is load the new file into gedit and use Search and Replace to change a hyphen
followed by a space into nothing. This will fix all the hyphenated words that are now no longer at
the end of a line:

After conversion you can load the file into any word processor and use your spell checker to find
and fix problems. Then you can proofread it against the original book, add formatting and make
a PDF out of it, or save it as HTML and make an EPUB out of it.

123

In my own case, Open Office had no problems with my text file before I removed the line
endings, but was convinced it had become a spreadsheet afterwords and could not be persuaded
otherwise. Fortunately, the Sugar Write Activity was able to open it without incident and is an
excellent choice for proofing and correcting your e-book.

Finally you can load the book into Read Etexts and read it:

124

16. MAKING EPUBS

Of all the formats for e-books only EPUB combines small file sizes
with the ability to do formatted text and illustrations. An EPUB is
like a website contained in a Zip file, with a Table of Contents
attached. It is also in one important way different from a
website. A website is made with HTML (usually) but an EPUB is
made with XHTML.

The difference is small but crucial. HTML is meant to be forgiving.
If you make a web page you can leave out some tags, fail to close
tags, or close tags in a different order than you opened them in. A web browser is supposed to
forgive that, as much as possible. XHTML, on the other hand, is like HTML that is not forgiving.
You can't leave out a tag or put in a tag where the XHTML browser does not expect it. If an
XHTML browser discovers an error in your page it can simply refuse to display it.

The end result is that an XHTML browser is easier to make than an HTML browser. A lot easier.
 It does put a burden on the e-book author to get his tags right, but in practice you'll never
create an XHTML file by hand. Instead, I recommend that you use the free e-book editor Sigil,
shown here editing The Galaxy Primes by Edward E. Smith:

Sigil is available for Windows, Linux, and the Macintosh. You can download it here:

http://code.google.com/p/sigil/

125

http://code.google.com/p/sigil/

There are installers for all three platforms. On Windows the installer can be a little flaky. It is
supposed to install a Visual C++ runtime component if it is needed but it doesn't always do that.
If you have problems check the FAQ on the website, which explains how to work around the
problem. The installer on Linux worked fine, and I would recommend using that instead of
compiling Sigil from the source code.

To create your EPUB you'll start by creating an HTML file with your word processor using the
Save As... option from the File menu. As before, I recommend Open Office but MS Word will
do. When you add this HTML file to Sigil under the Text folder it will run a piece of code called
HTML Tidy that will convert your HTML into XHTML automatically. After that you can split your
book into multiple chapters, create table of contents entries, add images, etc. Here is the Boy's
Aviation book being edited using Sigil. The Ch button on the toolbar is used to split the file
containing the entire book into separate files for each chapter. When you make the title of a
chapter have the Heading 1 style Sigil puts the chapter in the Table of Contents for the book.

You can easily add pictures to the book by cropping them out of the original page images, but
they should probably be resized to be 600 pixels wide for best results.

Here are a couple more screen shots of the EPUB I made with Sigil being read in the Read
Activity:

126

In the Read Activity you can change the size of the text using the View tab, but the illustrations
stay the same size.

127

MAKING A MOBI FOR THE KINDLE STORE

If all you want to do is convert an EPUB you have made to read on a Kindle it is quite simple. All
you need to do is download the free kindlegen utility (available for Windows, Linux, and the Mac)
from Amazon.com and run it against your file like this:

kindlegen BigBookOfAviationForBoys.epub

While this will give you a perfectly usable .mobi file for your Kindle it will not be in the format
required by the Kindle Store. If you've created a book as a class project and want to have a
Kindle format available for parents, this may be sufficient. However, with only a bit more work
you can sell your book to the world.

What your book is lacking that the Kindle Store requires is:

1. A cover image
2. A linked table of contents page

The cover image is simply a JPEG file that looks like the front cover of a book. You can easily
create a nice book cover image with The GIMP. Here is one I made for another book:

Note that because the image has a white background I put a gray border around it. You'll need
this image for the Kindle Store page as well as for the book itself, and the grey border is needed
to make the book cover stand out against the white page background.

You can then insert this image into the EPUB without actually showing it on any page.

128

The table of contents is simply a page that links to the chapters in your book. Neither Booki or
Sigil supports creating a page like that, but that's easily solved. What you need to do is extract
your EPUB files into a directory with any utility that supports Zip files. When you have
everything unzipped you'll see a bunch of files with .xhtml suffixes. As you might expect, these
are simply web pages, which you can edit with any HTML editor.

The Mozilla project has a product called Seamonkey which combines a web browser, an HTML
editor, and an email client. This can be downloaded for free from mozilla.org in versions for
Windows, Linux, and Mac OS, and it's perfectly adequate for creating your table of contents
page.

Look for a file named content.opf. Using a text editor add the entries in bold to the top of the
file to be like this:

 <metadata>
 <dc:publisher>FLOSS Manuals</dc:publisher>
 <dc:rights scheme="License">GPLv2+</dc:rights>
 <dc:language>en</dc:language>
 <dc:title>Make Your Own Sugar Activities!</dc:title>
 <dc:creator>James D. Simmons</dc:creator>
 <dc:date>2010-11-28</dc:date>
 <dc:date scheme="start">2010.12.09-07.20</dc:date>
 <dc:date scheme="last-modified">2011.05.13-00.00</dc:date>
 <dc:date scheme="published">2011.05.13-18.25</dc:date>
 <dc:identifier id="primary_id">ActivitiesGuideSugar/2010.11.28
 </dc:identifier>
 <dc:identifier scheme="booki.cc">make-your-own-sugar-activities
 </dc:identifier>
 <meta name="cover" content="att000_MYOSA_Cover" /> <meta name="cover" content="att000_MYOSA_Cover" />
 </metadata>
 <guide> <guide>
 <reference type="toc" title="Table Of Contents" <reference type="toc" title="Table Of Contents"
 href="ch000_table_of_contents.xhtml" /> href="ch000_table_of_contents.xhtml" />
 </guide> </guide>

 The toc entry point to another entry in the file that should look like this:

 <item href="ch000_table_of_contents.xhtml" media-type="application/xhtml+xml"
id="ch000_table_of_contents"/>

If you created a new page with your HTML editor (instead of editing a page that was already in
the EPUB) you'll need to add an entry like this yourself. There should be a similar entry for your
cover image if the image is included in the EPUB.

If everything looks good you can use your Zip utility to create a new archive with all these files in
it. Change the suffix from .zip to .epub and you'll have a file you can run kindlegen against to
create a MOBI file that the Kindle store will accept.

When you run kindlegen, do pay attention to the messages it gives you. If it cannot find your
table of contents or cover image it will tell you. Also, be sure to try out your file with the free
Kindle Previewer program. There are versions of this for Windows and the Macintosh, and the
Windows version will run under WINE on Linux. This program will show you what your book will
look like on a real Kindle. The formatting that a Kindle will support is a subset of what HTML
supports, so it is likely you'll need to modify some pages to make them look right on the Kindle.
The web page version of this book has beautiful drawings with transparent backgrounds at the
top of each chapter. They looked quite awful on the Kindle version so I had to remove them.

Having a book on the Kindle Store is not an easy path to riches. The first two weeks my book
Make Your Own Sugar Activities! was available it sold seven copies. These meager sales were
enough to make my book ranked 60,425 out of over 750,000 books, making me one of the top
sellers on the Store!

129

The Kindle Store will let you publish public domain works as well as your own writings. I have
created e-books from a couple of books in my personal collection: Ancient Manners by Pierre
Louÿs and The Big Book of Aviation for Boys. I decided to sell them on the Kindle Store as well as
donate them to the Internet Archive and Project Gutenberg. While Ancient Manners did quite well
its first week on Project Gutenberg it has yet to sell a single copy on the Kindle Store.

The Big Aviation Book for Boys almost ended up getting rejected by the Kindle Store because I
could not prove conclusively that it was in the public domain. I had also posted the EPUB and
MOBI files on the Internet Archive, so the work would not have been totally wasted.

PUBLISHING YOUR E-BOOKS
17. Introduction
18. Copyrights, Licenses And Fair Use
19. Donating E-Books To The Internet Archive
20. Donating Texts To Project Gutenberg
21. calibre
22. The Pathagar Book Server
23. genCollectionInterface (gCI)

130

17. INTRODUCTION

Publishing your e-book can be simple or it can be complicated,
depending on what it is you are publishing. The simplest thing to
publish is your own work. You can pick a Creative Commons
license for it and upload it to the Internet Archive and you'll be as
good as done.

If you have someone else's book published before 1923 you can
publish it as an e-book either on Project Gutenberg or on the
Internet Archive. Each site has rules you need to follow, and I'll
give you some idea of what the process is.

If you have a book published 1923 or later you might still be able to
publish it on either site, but the process will be more difficult. By "or later" I mean "not much
later". I hope you will have the good sense not to make an e-book out of Harry Potter or some
other living author's work.

The last option you have is to put the e-book on a server and distribute it yourself. There are
several good reasons to do this:

Some OLPC deployments have special permission to distribute the works of living authors
to their students. This means there needs to be a way to make certain that only those
students can download the books.
The Internet Archive and Project Gutenberg have thousands of books, only a fraction of
which are of interest to children. You might want to set up a more focused collection of
books that are specifically for children, or that are in your native language.

Setting up a server to publish e-books generally means setting up your own website, which may
only be accessible from your own network. There are a couple of software packages available
specifically designed to create a website for hosting e-books, and I'll have chapters on each.

131

18. COPYRIGHTS, LICENSES AND FAIR USE

COPYRIGHTS AND THE PUBLIC DOMAIN

"It does look as if Massachusetts were in a fair way to
embarrass me with kindnesses this year. In the first place, a
Massachusetts judge has just decided in open court that a
Boston publisher may sell, not only his own property in a
free and unfettered way, but also may as freely sell
property which does not belong to him but to me; property
which he has not bought and which I have not sold. Under
this ruling I am now advertising that judge's homestead for sale, and, if I make as
good a sum out of it as I expect, I shall go on and sell out the rest of his property."

Mark Twain, Letter of acceptance of membership to Concord Free Trade Club (March
28, 1885)

Copyrights give authors the exclusive right to determine how their works may be used, and they
ensure that authors get compensated for their work. No serious person has ever suggested
eliminating copyrights. Copyright protection does not last forever, though. At some point
copyrights expire, and when they do the work goes into the public domain. At that point anyone
can do anything they want with it.

It is the public domain that makes sites like Project Gutenberg and the Internet Archive possible.
Most of the content they provide is in the public domain, and the rest is copyrighted but licensed
in a way that allows free distribution.

The important question is just when do copyrights expire? The answer depends on what country
you live in, and if you want to publish your work on the Internet, what country the server is in.
The Internet Archive and Project Gutenberg both have servers in the United States. Project
Gutenberg also has sister sites in Australia and Canada. Therefore it is important to understand
the copyright laws of these countries. By "understand" I mean "know what you're up against,
mostly." My grandfather, when watching me set up a VCR in his home, told me "You have to be
a Philadelphia lawyer to figure that out!" I am not a lawyer, Philadelphia or otherwise, and
nothing in this chapter should be taken as legal advice.

This is a picture of some of the older books that I own:

132

The books shown include titles from the 1920's, 1930's, and 1940's. How many of these books
are old enough to be in the public domain? The answer may surprise you.

United States Copyright Law

"Reader, suppose you were an idiot. And suppose you were a member of Congress.
But I repeat myself."

Mark Twain, from a draft manuscript (c.1881), quoted by Albert Bigelow Paine in Mark
Twain: A Biography (1912).

For most of its history the United States has had reasonable copyright laws. According to the
Project Gutenberg website the 1909 Copyright Act gave works a copyright term of 28 years. If
the author was still living, he could apply for a renewal for another 28 years, otherwise the work
would pass into the public domain. Since then the copyright term has been extended twice, first
to 75 years and then to 95 years. The end result of this is that only works published before
1923 are definitely in the public domain in the United States. Other works might be in the public
domain, but finding out if they are can be very difficult.

If the copyright term was still 56 years a lot of worthwhile books would be in the public domain
and the vast majority of authors would not be affected. Very few books remain in print for 28
years, let alone 56 years. As a result of the latest copyright extension, there is a twenty year
period where nothing new enters the public domain, and there is no guarantee that the same
misanthropes who got the last extension won't try to get another one at the end of that period.
I am hopeful, though. Maybe when it comes time to ask for another extension, enough of the
public will understand just what has been stolen from them to make it difficult to do again.

Not everything published after 1922 is copyrighted. In fact, quite a bit of it is not. The trick is
figuring out which books are in the public domain and being able to prove it.

There are several rules regarding what works published after 1922 are in the public domain.
They are summarized in the Gutenberg Copyright How-To:

http://www.gutenberg.org/wiki/Gutenberg:Copyright_How-To

133

http://www.gutenberg.org/wiki/Gutenberg:Copyright_How-To

In practice, only two of the rules apply to a significant number of books. Rule 8 says that
publications of the United States Government cannot be copyrighted. This is why you can get
free e-books of the 9/11 Commission Report, the CIA World Factbook, etc.

Then there is Rule 6. I quote the Project Gutenberg website:

"Works published before 1964 needed to have their copyrights renewed in their 28th
year, or they'd enter into the public domain. Some books originally published outside
of the US by non-Americans are exempt from this requirement, under GATT. Works
from before 1964 were automatically renewed if all of these apply:

At least one author was a citizen or resident of a foreign country (outside the
US) that's a party to the applicable copyright agreements. (Almost all countries
are parties to these agreements.)
The work was still under copyright in at least one author's "home country" at
the time the GATT copyright agreement went into effect for that country
(January 1, 1996 for most countries).
The work was first published abroad, and not published in the United States
until at least 30 days after its first publication abroad.

"If you can prove that one of the above does not apply, and if you can prove that
copyright was not renewed, then the work is in the public domain. For US authors
and publications, non-renewal is the hard part to demonstrate."

That last sentence says it all. Most copyrights, perhaps as many as 85%, are not renewed.
Proving that they were not renewed is difficult. Far too many books end up as "orphan books"
because it is either too difficult to prove that they are in the public domain or to track down the
owners of the copyright. The first e-book I made, The Big Book Of Aviation For Boys, is a good
example. It was printed in 1928. Only one edition was ever printed. The bulk of the book is
reprinted articles from newspapers and a magazine called the Aero Digest. I can't imagine why
anyone would have renewed the copyright on this book, but it would be difficult to prove that it
was not renewed.

PG does have materials that have cleared Rule 6. Much of the science fiction in PG was originally
published in magazines and never reprinted, or not reprinted in the same form. As an example,
when Edward E. Smith originally wrote Triplanetary it was a standalone novel published in a
magazine as a serial. Later he rewrote parts of it to make it the first volume of the Lensman
series. This second version is copyrighted and still in print. The earlier version is available on
PG.

The Stanford University website has a useful search for finding out if a copyright has been
renewed and when. By itself it may not be enough to tell you if a book has fallen into the public
domain, but at least it can keep you from wasting time on books that haven't:

http://collections.stanford.edu/copyrightrenewals/bin/search/simple

Using this database I found out that several books I thought were too obscure to be renewed in
fact had been renewed. The database did not show my Big Book Of Aviation For Boys being
renewed, and it did show several renewals for the same author, Joseph Lewis French, so it might
be a safe book to donate to PG. One other observation on this database: I bought a fair
number of books at a used book sale that I thought had "Rule 6" potential. After looking up
those books and all the books from the thirties and forties that I already owned only seven
looked like their copyrights had not been renewed. While it may be true that 85% of these
copyrights are not renewed, if the book is good enough to end up at a used book sale (rather
than a landfill) the odds of non-renewal go down considerably.

134

http://library.dts.edu/Pages/RM/Helps/copyright.shtml
http://collections.stanford.edu/copyrightrenewals/bin/search/simple

Even if it looks like copyright has not been renewed on a book you're still not out of the woods.
Much of the material from my Boy's Aviation book was reprinted from other books, and I'd need
to prove that all those sources were in the public domain before PG would accept it. I tried to
submit another book, Orpheus, Myths Of The World by Padraic Colum, and had to deal with the
fact that Padraic Colum did not become a U.S. citizen until 1945 and as a result I would have to
prove that the book was not published abroad more than 30 days before it was published in the
United States. The book is published by Macmillan and there is no reason to believe it was not
published in the United States first, but how could you prove it? For that reason Project
Gutenberg rejected it.

If you want to publish a public domain book on the Kindle Store they have the same
requirements. I wanted to publish The Big Book of Boys Aviation on the Kindle Store and they
asked for the original publication date for every article in the book, the full name of each author,
plus the date each author died (and online resources they could use to verify my information).
There is no way I could satisfy that requirement. I pointed out to them that they already sold
reprints of that book by Kessenger Publishing, and that Kessenger had no rights to the book that
I didn't have. I didn't expect this argument to sway them, but apparently it did, and they agreed
to publish my e-book.

PG does have an official HOWTO for doing Rule 6 submissions, which you can find here:

http://copy.pglaf.org/rule6-new.txt

Australian Copyright Law

"I was sorry to have my name mentioned as one of the great authors, because they
have a sad habit of dying off. Chaucer is dead, Spencer is dead, so is Milton, so is
Shakespeare, and I’m not feeling so well myself."

Mark Twain

There is really only one thing worth knowing about Australian copyright law, which is that it is
based not on publication date but on the date the author died. If an author died before 1956 and
his books were published in his lifetime then his works are in the public domain. According to
Wikipedia:

Any work that was published in the lifetime of the author who died in 1956 or earlier, is
out of copyright.
Any work that was published in the lifetime of the author who died after 1956, will be out
of copyright seventy (70) years after the author's death.

This works well for well-known authors, but would not help The Big Book Of Aviation For Boys
much. That book has many authors, most obscure.

There are several resources for finding out when an author died. Wikipedia is fine for famous
authors. For the less famous you might try looking up the book in the Open Library:

http://openlibrary.org

This is a site operated by the Internet Archive that plans to create a web page for every book
ever printed. I contributed to the entry for my Boy's Aviation book here:

http://openlibrary.org/works/OL6729449W/The_big_aviation_book_for_boys

It shows me that the editor of the book, Joseph Lewis French, died in 1936. It also tells me that
Robert Benchley died in 1945 and that Thorne Smith died in 1934. Project Gutenberg Australia has
all of my Thorne Smith novels already, but only My Ten Years In A Quandary for Benchley. I have
some of Benchley's books, plus Experiment In Autobiography from H.G. Wells, which PGA doesn't
have yet.

135

http://copy.pglaf.org/rule6-new.txt
http://openlibrary.org/works/OL6729449W/The_big_aviation_book_for_boys

The requirement to publish within the life of the author might prevent me from making some
donations, For instance, Chips Off The Old Benchley was published after Benchley's death, and
my copy of The Autobiography of Will Rogers was published after Rogers' death.

CANADIAN COPYRIGHT LAW

Canadian copyrights expire 50 years after the end of the calendar year when the author dies. It
does not make any difference whether the work was published in the author's lifetime. Thus
Canada will be a suitable home for Chips Off The Old Benchley and The Autobiography of Will
Rogers, (with the introductions removed). As I write this I have received copyright clearance for
all three of the Robert Benchley books I own from Project Gutenberg Canada, and I am in the
process of preparing scans and OCR'd text files for them for Distributed Proofreaders Canada.
Project Gutenberg Canada already has Experiment in Autobiography.

CREATIVE COMMONS LICENSES

There are two factors that determine what you can do with a book: whether the book is
copyrighted, and what license the book has. By default all copyrights have an "All Rights
Reserved" license. This means that when you buy a book you can read it, but you can't copy it,
make a play or a movie based on it, etc. You can give the book away, loan it out, or sell it and
that's about it. This kind of license is so common you might be surprised to learn that other
kinds of licenses exist.

creativecommons.org has licenses that anyone can apply to his work at no cost. These licenses
give rights to the readers of your book that they would not normally have. There are several
licenses available and they let you control just what rights you allow to your readers. For
instance, you can allow others to freely distribute your work and make derivative works (like
translations) as long as those works are non-commercial.

Why would you want to do this? Well, if you're hoping to write something that will be accepted
by Oprah's Book Club you wouldn't and I wouldn't either. But not every book has commercial
possibilities, and there are some books that are needed and you'd be happy if you could just
break even publishing them. Creative Commons licenses are good for those kind of books. If
you write a book using one of the CC licenses you can publish it as an e-book for free on the
Internet Archive website.

One author, Cory Doctorow, has actually used Creative Commons licenses on his books and still
managed to get them published by a regular publisher. This means that you can read his books
for free as e-books but his publisher is the only one who can sell you a printed copy. You can
read about his experiences with these licenses at his website:

http://craphound.com/

You can learn more about the licenses that are available at
http://creativecommons.org/about/licenses.

FAIR USE

"Fair Use" is defined as the rights you have to a published work that you don't have to ask the
publisher's permission to get. The usual examples include quoting short passages of a work in a
book review, plus making a parody of a work. There is no hard and fast rule as to how much of
a work you can quote before it stops being Fair Use, and not all parodies are protected. The
usual criteria is if your use of a work affects the value of the original work in the marketplace.

136

http://creativecommons.org
http://craphound.com/
http://creativecommons.org/about/licenses

There are several page images from the Junior Illustrated Library book The Arabian Nights in this
book. I found out after I had gone through the work of making an e-book out of it that the book
is still in print! The few page images from that book I've included in this book should qualify as
Fair Use. These pages are not in any way a substitute for buying the book, and the amazon.com
website actually has more page images for this book than I use. Distributing my e-book to
anyone else would not be Fair Use. My own personal use should be OK, since I still possess the
original book.

I have heard from teachers who want to make e-books out of the textbooks they use in class,
often to help children with reading problems (since some kinds of e-books support text to
speech). Is this Fair Use? From what I've read about it, it is probably dangerous to assume that
it is. It would be safer to try and get permission from the publisher.

The U.S. Copyright Office has an article on Fair Use here:

http://www.copyright.gov/fls/fl102.html

Note that while they do mention non-profit and educational uses as possibilities, the example
they give is short excerpts, not the whole book.

137

http://www.copyright.gov/fls/fl102.html

19. DONATING E-BOOKS TO THE

INTERNET ARCHIVE
The Internet Archive is attempting to create an electronic version
of the Library of Alexandria, preserving the public domain including
books, audio recordings, movies, and even websites. Most of the
books on the site they scanned in themselves, using custom built
book scanning machines called Scribe workstations. The easiest
way to donate an e-book to their collection would be to send them
the actual book and let them do the scanning. You might not be
able to get the book back afterwords, though. In addition to scanning public domain texts they
also do copyrighted titles. These are not available for download by the general public, but they
can be gotten in a format known as DAISY (used to support text to speech) if you are "print
disabled". You need to be vetted by the Library of Congress to get access to these copyrighted
works.

If you prefer you can scan your own book and submit it. I have gone through this process with
several books, so I can tell you what to expect if you go this route.

The first thing you need to do is go to the Internet Archive website and apply for a "virtual
library card", by clicking on the Patron Info tab and following the instructions. This is a different
kind of library card, because you don't need one to download books from the site but you do
need one to donate books.

Once you've gotten your card and logged into the site you can donate materials using the
Upload/Share button in the upper right corner of the site. You will be donating your book to the
Community Texts collection. Other collections are possible, but unless you represent a library
you won't need to have your own collection.

Generally your text donations will be one of two possibilities, although other options are
available. The possibilities are:

Your own content, licensed under one of the Creative Commons licenses. An example of
this is at http://www.archive.org/details/CritterConstructionBook.
A PDF created by scanning pages from a published book that is in the public domain. IA
refers to this as an "Image Container PDF" to distinguish it from the other kind of PDF. An
example of this I created is at http://www.archive.org/details/BigAviationBookForBoys.

Whichever one you have, you should pay attention to how you name the file if you want it to be
downloadable by Get Books or Get Internet Archive Books. You want to name your PDF the
name you want to use as your identifier on the site, but without spaces. For example:

You want to use the title "Big Aviation Book For Boys" as your title on IA.
IA will create an identifier for your entry named "BigAviationBookForBoys".
Your content will be posted in a sub directory named "BigAviationBookForBoys".
If you want your items to be downloadable by Get Internet Archive Books you'll want to
follow the standard used internally by IA and name your PDF "BigAviationBookForBoys.pdf".

On one of my submissions I didn't do that. I named my file "AncientMannersOriginalPages.pdf",
so all the file names that were created were based on that file name. I was able to rename
most of them afterwords, but not the EPUB file. As a result you can't download that EPUB with
Get Internet Archive Books.

When you upload your submission the website will run a derive job which will convert your PDF
into several other formats:

138

http://www.archive.org/details/CritterConstructionBook
http://www.archive.org/details/BigAviationBookForBoys

INDEX OF /17/ITEMS/BIGAVIATIONBOOKFORBOYS/

BigAviationBookForBoys.djvu 4036000
BigAviationBookForBoys.gif 319668
BigAviationBookForBoys.pdf 182866779
BigAviationBookForBoys_abbyy. 6944391
BigAviationBookForBoys_djvu.txt 456551
BigAviationBookForBoys_djvu.xml 4319378
BigAviationBookForBoys_files.xml 3235
BigAviationBookForBoys_jp2.zip 83198619
BigAviationBookForBoys_meta.xml 1473
BigAviationBookForBoys_scandata.xml 96124
BigAviationBookForBoys_text.pdf 29897117

BigAviationBookForBoys.pdf is my original submission, and all the others were derived. You
can ignore the .xml files. The website has its own uses for these, but they are not something
you are likely to want to download. The rest of the files are:

BigAviationBookForBoys.djvu: A DjVu version of the book. This e-book is only 3.8
megabytes yet it looks as good as my original 174 megabyte PDF!
BigAviationBookForBoys.gif: An animated GIF file that shows sample pages from the
book and is shown on the web page for the book.
BigAviationBookForBoys.pdf: My original monster PDF.
BigAviationBookForBoys_abbyy.gz: A zipped up XML file created by or for ABBYY Fine
Reader which you can ignore.
BigAviationBookForBoys_djvu.txt: A text file created by ABBYY Fine Reader out of the
PDF. With a little proofreading this could be used as the basis for a Project Gutenberg E-
text.
BigAviationBookForBoys_jp2.zip: A zip archive containing page images extracted from
your PDF and saved in the JPEG2000 format. You're not likely to use this for your own
submissions, but if you wanted to do a Project Gutenberg submission of a text in the
Internet Archive this might be helpful.
BigAviationBookForBoys_text.pdf: The PDF that the Internet Archive created from my
original 174 megabyte monster. 28.5 megabytes -- quite an improvement! The word text
in the name refers to the layer of OCR'd text in the PDF that makes it searchable and
supports copying text to the clipboard.

In addition to these there is an EPUB file that you can download from the main page. It looks
like this:

139

If you're a glass half-empty kind of person you'll note that the EPUB needs a lot of proofreading
before you could really give it to anyone. If you're a glass half-full you'll note that 90% of the
text is right and the program that generated the EPUB has done a great job with the
illustrations. It has found them, cropped and resized them, and placed them in the EPUB nearly
where you'd like for them to be. You can use this EPUB as the basis for a hand-crafted version
and save yourself some work.

The first thing you're going to want to do after your book has "derived" is rename
BigAviationBookForBoys.pdf to BigAviationBookForBoysLarge.pdf and rename
BigAviationBookForBoys_text.pdf to BigAviationBookForBoys.pdf. The Get Internet
Archive Books Activity will download the BigAviationBookForBoys.pdf file when you specify
that you want to download a PDF, so it's important that that name points to the smaller file.

It sometimes happens that the derive job fails. You'll know this because a day later your original
posting is the only file available for download on the page. There are only two ways to deal with
this that I know of. The first is to post in the Community Texts forum on the website. As it
happens the first two books I donated to the Internet Archive did not derive successfully. My
post on the forum was never answered. The second thing I tried was to send an email to
info@archive.org. I didn't get immediate action, but one of the staff did rerun the derive job for
both books and both were processed successfully.

In the case of the two books where the "derive" job did not run the first time I was uploading the
PDF from a Linux box and on Linux the normal "Share" button does not work. You need to use
an alternate method of uploading texts that does not use Flash in the web browser. For my
other books I used Internet Explorer on MS Windows with the normal Flash-using "Share" button.
For these books the "derive" jobs ran just fine. For this reason, if you are a Linux user you may
find it worthwhile to use a Windows box or a Macintosh to upload your donations to the Internet
Archive.

140

mailto:info@archive.org

EPUBS AND MOBIS

When you look at the list of derived files you won't see any files with the suffix of .mobi or
.epub. Yet the Internet Archive does support downloading books in those formats, and you may
well want to replace the automatically generated MOBI and EPUB files with versions that you
have corrected and improved by hand. I wanted to do this with my own book, Make Your Own
Sugar Activities! If you can't see files named .epub and .mobi in the file list, how is it possible to
delete the automatically generated versions and replace them with your own?

It turns out that the EPUB and MOBI versions are not generated as part of the "derive" job.
Instead, they are generated on the fly when you click on the download link. If the program that
generates the EPUB or MOBI sees that a file with the correct name has been uploaded to the
server it will give that file to the person doing the download instead of generating one.

Here is the file list for Ancient Manners, another book where I donated both a PDF and hand
crafted EPUB and MOBI versions:

As you can see, on May 31st I uploaded my EPUB and MOBI, making sure that the filename was
consistent with the PDF I uploaded originally. As a result of this anyone who requests an EPUB
or Kindle version will get my beautifully handcrafted version, not the generated version.

You can only update books that you have created the entries for yourself, so you might wonder
what happens if you use Booki to create a corrected EPUB of a book you did not donate. The
answer so far is that you'll need to submit the corrected EPUB as a brand new book. There is
no way to replace the uncorrected version in this case.

It makes a lot of sense to handcraft EPUBs and MOBIs for the books you donate to the Internet
Archive. There are books like The Big Book Of Aviation For Boys that should be in the public
domain (because there is no evidence that its copyright was renewed), but which Project
Gutenberg would not accept because they felt that the copyright status was still in doubt. The
Internet Archive is a good home for books like that.

If you do donate corrected EPUBs, make sure you change the description of your book to call
attention to it.

EXAMPLES

When considering how you will create your submission to the Internet Archive you might find it
useful to look at my submissions first. For reasons I will not attempt to explain my user id on
the Internet Archive website is nicestep. If you enter that in the Search box on the website it
will list out all my donations. Some of these donations were done twice. The first version was
done using manual cropping and clean up, and the second was done with Scan Tailor. Some of
my more recent submissions were only done with Scan Tailor.

141

It is a natural impulse when seeing a beautifully crafted e-book like Abroad to want to try and do
something just as well. There's nothing wrong with wanting this, but getting results like that is
not easy. You need well-lit pages when taking the photos and lots and lots of patience. Your
first attempts will probably look worse than what you get with Scan Tailor, and will be a great
deal more work. Not every book is worth that kind of effort, and not every book will benefit
from that effort.

The books Thirteen Women and Out Of This World are not masterpieces of the book maker's
art. They were cheaply made and showing signs of wear. The e-books I made of them using
Scan Tailor look better than the originals.

My newer submissions are in the public domain because of Rule 6, at least as far as I am able to
determine. IA does not require copyright clearance before posting, but they will remove
copyrighted material from the index when they find it. They do distribute copyrighted works in
DAISY format to qualified persons, so even if your donation turns out to not be in the public
domain it is not necessarily lost. I look up my submissions in the Stanford copyright renewal
database to verify that they are eligible.

THE INTERNET ARCHIVE AND THE NOOK STORE

After I had published several books on the Kindle Store I decided to check out the Nook Store,
only to find that most of the books I had donated to the Internet Archive had already found their
way to the Nook Store. Barnes and Noble had taken the automatically generated, unproofed
EPUBs from the Internet Archive and was offering them as free books in the Nook Store. I can't
figure out why they took some and not others. There definitely is a human element involved,
although nobody is correcting the texts.

Another outfit called Kessenger Publishing has taken Image Container PDFs from the Internet
Archive and will create paperback books on demand with them. Both Barnes and Noble and
Amazon sell these books, and a couple of them might be based on page images I made. These
reprinted books are not cheap either!

None of this is illegal. I only mention it so you'll know that most of the "free" books for the Nook
and Kindle are free on the XO laptop as well, and you don't need to have a credit card to get
them!

142

20. DONATING TEXTS TO PROJECT

GUTENBERG
If I was to sum up my impressions of the Internet Archive versus
Project Gutenberg I would have to say that the Internet Archive
focuses more on preserving as many books as possible, whereas
Project Gutenberg is more focused on quality. Not only does PG
require extensive proofreading for their texts, they also require a
copyright clearance before they will even consider accepting a
book. It is much less work to create a submission to the Internet
Archive than it is to submit a text to Project Gutenberg. If you
wanted to donate the same book to both organizations when your
Image Container PDF is ready to submit to the Internet Archive the work of creating a text for
Project Gutenberg would have only just begun.

COPYRIGHT CLEARANCE

The first thing you need to do to create a submission to Project Gutenberg is to get a copyright
clearance for the book by submitting a TP & V to the website using a form on the site. TP & V
refers to the Title Page and Verso of your book. You'll need to scan both and submit the
image files. Either one or the other should show a publication date before 1923 (unless you think
you can get a Rule 6 clearance because the copyright was not renewed). Here is a title page for
a book that I bought recently:

143

Here is the Verso, which is just the back of the Title Page. Both give a publication date of 1916.

144

I bought this book in case my first submission was rejected. Happily it wasn't, so I am able to
avoid proofreading a geography textbook from 1916. The text I did submit is an English
translation of the Pierre Louys novel Ancient Manners published in Paris as a limited edition for
subscribers in 1906. Project Gutenberg already had the novel in French under the title Aphrodite,
but did not yet have an English translation.

My TP & V for Ancient Manners did not show a publication date, but the Open Library website
gave a publication date of 1906. The woman who processed my request told me that the Open
Library website was not a good enough authority for this purpose, but she had checked the
Library of Congress website and had concluded that 1906 was a plausible publication date for the
book.

145

When you submit a book to PG that was published after 1922 but did not have its copyright
renewed you must follow the procedures in the Rule 6 HOWTO:

http://copy.pglaf.org/rule6-new.txt

If your submission is cleared, the email you get from Project Gutenberg should look like this:

Project Gutenberg copyright clearance submission
automated status update notification.

Title: Ancient Manners
Author1: Pierre Louys
Status: Cleared OK
Clearance OK key=20100611081931louys20100611081931louys

You're going to need to use the clearance key (shown in bold above) to submit your book.

The next step is to do OCR on the page images you created for your books, which will create a
separate text file for each page. If you want to do all the work yourself use the proofer.py
utility from the chapter on creating text files to proof one page at a time before combining
them. Format the text page as best you can and run gutcheck, jeebies, and a spell checker
(like the one built into guiguts) on the text. Make the file as error-free as you can before
submitting it to PG. PG has volunteers known as whitewashers (after the best known passage in
Tom Sawyer) who check over submitted texts. The first thing they'll do is run gutcheck, jeebies,
and gutspell on your file. If these utilities show lots of errors they won't even look at your
submission, so be considerate of their time and run these tests yourself.

Creating a submission to PG can be a lot of work, but if you want the donation to happen as
quickly as possible its the only way. If you aren't in a hurry you can donate page images to
Distributed Proofreaders instead.

146

http://copy.pglaf.org/rule6-new.txt

DISTRIBUTED PROOFREADERS

To meet the standards of Project Gutenberg a Plain Text file will need a lot of proofreading,
preferably by more than one person. Distributed Proofreaders is a website where hundreds of
volunteers proofread and correct individual text pages by comparing the text to an image file
showing the page it corresponds to. There are several "rounds" of proofreading, and when
those are finished a Project Manager combines the individual pages, does some final checks, and
adds the current Project Gutenberg license text. It may be offered to DP volunteers for
"Smooth Reading", where the volunteer reads the book for pleasure and identifies any problems
he spots. It then gets submitted to Project Gutenberg. The Distributed Proofreaders site is at:

http://www.pgdp.net/c/

You don't need to submit your book to DP to get the book submitted to Project Gutenberg, but I
think it's a good idea. As a computer programmer I know all too well that it is difficult to find
flaws in your own work, and much easier to spot flaws in the work of others. As a practical
matter, it isn't really necessary to remove the beam from your own eye before you look for
motes in other people's eyes. If we all check each other's eyes everything will ultimately get
cleaned out.

To submit your work to DP you'll need a copyright clearance from Project Gutenberg first. When
you get that contact the DP website using the email address from the Content Provider's FAQ:

http://www.pgdp.net/c/faq/cp.php

You need to let them know your intention to submit a text for proofreading. Provide the
copyright clearance information you got from Project Gutenberg in the email.

Once you have that, prepare individual text files corresponding to the page images in your book.
DP wants blank pages to be included in the page images, starting from the inside of the front
book cover and continuing to the inside of the back cover. The text files should have MS-DOS
style line endings, which means that every line of text ends with two characters, called a
carriage return and a line feed, not just a line feed. You can verify that your text files have the
correct line endings by trying to edit them with Notepad in Windows. If the file doesn't have the
right kind of line ending Notepad will show the file as having no line endings at all and funny
characters where the line endings should be. If you find yourself with text files like this, one way
to fix them is to load them into Word Pad and save them back out again. Word Pad can handle
Unix-style line endings and will change them to MS-DOS style when you save.

If you're using Linux a less labor-intensive way of doing the line ending conversion is to use the
unix2dos command:

unix2dos *.txt

The page images should be in PNG or JPEG format and should be 1000 pixels wide. You can
convert TIFFs to JPEG's using Image Magick's mogrify command like this:

mogrify -resize 1000 -monochrome -format jpeg *.tif

Both images and text files should be named as three digit numbers followed by the suffix. If you
use the guiprep utility mentioned in the chapter on creating Plain Text files it will do the
renaming of the files for you, and will run a program pngcrush which will reduce the disk space
required for your PNG files without affecting the quality of the image.

While guiprep assumes you will be submitting PNG's, JPEG's are also acceptable and will take
much less disk space. There is no real advantage to using PNG's for your submission to
Distributed Proofreaders.

147

http://www.pgdp.net/c/
http://www.pgdp.net/c/faq/cp.php

If your book is illustrated DP will ask you to provide high quality JPEGs of the illustrations, named
to correspond to the page they appear on. These illustrations may be used to create an HTML
version of the book. It is likely that you will be asked to use a flatbed scanner to create these
illustrations, to avoid problems like inadequate lighting and keystoning. They will ask for color
scans, even if the original is grayscale, because they want the color of the paper to come
through. You should also not crop the images yourself. Leave the cropping to the person who
will create the HTML version of the book.

When you have all this the text files will go into a directory named text, the page images can go
in a directory named pages, and the illustrations go in a third directory which you can name
illustrations or something similar. When you have these directories created you need to put
them all in a Zip file named

DPusername_ShortTitle.zip

where DPusername is the account you have on the DP site and ShortTitle is a shortened
version of the book title with no spaces. You will also need to prepare a separate text file
named

DPusername_ShortTitle_README.txt

148

which will contain notes on the book. For my own submission to Distributed Proofreaders I
included the following information:

The copyright clearance number I was given by Project Gutenberg. This is the most
important piece of information in the README and must be provided.
The pages of the original book are not correctly numbered. There are many full page
illustrations and after each one the page numbering skips a page or two. I have verified
that no pages are missing from my submission.
There are several places in the text where Greek words are used in the original alphabet
(as in the illustration above). Having these words rendered in the Roman alphabet or
simply replaced with "(Greek words)" should not hurt the book much.
I have made an attempt to hand correct most of the text files before submitting them.

Until recently the next step would be to use an FTP client to copy these files to a directory on
DP's FTP server. Just before I was ready to submit my own work DP shut down their FTP server
because of problems with computer viruses. As of this writing an ordinary Content Provider
cannot upload content. You need to be a Project Manager, a privilege only granted to those who
have proofread hundreds of pages. The current method to get your content uploaded is to place
it on a server where a Project Manager can download it. One method popular with DP users is
called DropBox:

http://www.dropbox.com

This gives you a free website where you can post files for downloading by others. After that
have your files on DropBox, go the wiki page at:

http://www.pgdp.net/wiki/Content_Providers_seeking_Project_Managers

and start a new section for yourself and list your project. There is a special Wiki template you'll
be required to copy and fill in.

When I did this, someone on the site suggested making a posting to the "Books I'd Like To See In
PG" Forum topic describing my book to potential Project Managers. Proofreading books is not
necessarily first-in, first-out. If your book sounds more interesting than the next one in the
queue it might get a Project Manager sooner. I did this, and did manage to get a Project Manager
interested. He warned me that it might still be over a year before the book made it to PG. I
told him I was OK with that, and I was at the time. Less than a year later I decided to create
the PG submission myself.

After you've done all that you might consider doing some proofreading of other people's books.
Information on how to do that is on the site.

If your native language is not English or if the book you're submitting is not in English you'll want
to work with Distributed Proofreaders Europe:

http://dp.rastko.net/

This is also the place to submit books that are meant for Project Gutenberg Australia.

If you have books in English or French where the author has been dead fifty years or more you
could donate them to Project Gutenberg Canada. They, too, have their own Distributed
Proofreaders site:

http://www.pgdpcanada.net/c/default.php

149

http://www.dropbox.com
http://www.pgdp.net/wiki/Content_Providers_seeking_Project_Managers
http://dp.rastko.net
http://www.pgdpcanada.net/c/default.php

This is the place where I submitted my Robert C. Benchley collection. You also need a copyright
clearance before you can submit a book to PG Canada, but it is generally easier to get because
the only thing that needs to be verified is the author's death date. For my Benchley books this
meant that the author's words, drawings, and stills from some comedy shorts he appeared in
were all clearable1 . Regrettably, his illustrator Gluyas Williams outlived him by many years so
those charming illustrations could not be included in my submissions.

MAKING A WEB PAGE FROM A PLAIN TEXT FILE

If you're going to make a submission to Project Gutenberg directly (rather than going through
Distributed Proofreaders) you'll need to create a Plain Text and an HTML version of your
submission. The PG website has a pretty good article on how to convert your Plain Text file to a
web page by hand. What they don't tell you, unfortunately, is that there is really no need to do
that. Guiguts, the editor I recommended for creating your Plain Text file, has a dialog that will
automatically insert HTML markup into your page. You'll find it under the Fixup menu, option
HTML Fixup, and it looks like this:

It really is as simple as making a copy of your Plain Text file with a .html suffix, loading it into
guiguts, and pressing the Autogenerate HTML button. When I did that with The Big Sleep it
generated HTML that included a nice style sheet:

150

The resulting web page looks like this:

Notice that the style sheet justifies the text so both left and right margins are a straight line,
just like so many printed books do. The first line of text automatically becomes the title and the
second line is automatically the author.

While this is a great time saver, you'll still need to do two things by hand:

Text that is bold or italicized in the original will need to have <i> and </i> tags added.
Chapter headings will need to have <h2> and </h2> tags added.

For The Big Sleep I was able to do the whole conversion in about 10 minutes.

EXAMPLES

151

As of now I have completed two submissions to Project Gutenberg, the first of which was
Benchley Beside Himself for PG Canada. It went in on November 26, 2010 and you can check it
out by looking on the site for books by Robert C. Benchley. The Big Sleep, my second submission
to PG Canada, went in on January 11, 2011. The site announced the availability of The Big Sleep
like this:

I have donated several other texts to Distributed Proofreaders and DP Canada. Ancient Manners
went to DP, and DP Canada got two more Benchley books plus three more Raymond Chandler
novels. There is a substantial queue of books waiting to be proofed ahead of these.

On my first submission to PG (Ancient Manners) I did two things right and everything else wrong.
The two things I did right were:

I chose a book published before 1923. Rule 6 clearances are very difficult to get. I have
submitted several TP&V's to PG in hopes of getting Rule 6 clearance. None were cleared.
I put the book on the Internet Archive. Granted, the book pages were dingy from
insufficient lighting but having the book there did attract the interest of a Project Manager.

As for the things I did wrong:

My original page images were poorly lit, and could not easily be converted into readable
black and white PNGs.
I did my own OCR. This is not necessarily a mistake, but since my original page images
were of poor quality (due to the age of the book and inadequate lighting) it was difficult to
convince anyone that ABBYY Fine Reader would not have done a better job on the OCR
than Tesseract did. It is possible that it would have.
I spent many hours correcting my text files before submitting them. Because of this my
PM felt obligated to use them, whereas if I had just given him the scans he would have
tossed out my text files and put the scans in the OCR Pool.
I left out blank pages that were in the original book. I had also chosen a book where the
page numbering was faulty, where missing page numbers did not always mean missing
pages.

Eventually I scanned all the illustrations in color at 600 DPI using a flatbed scanner, and my PM
was able to clean up my original JPEG's enough to make usable page images out of them. He
also added blank pages to correspond to page numbers that did not exist.

My PM suggested the following:

"James, being the one who is working on your current project I strongly request you
leave the OCR to the person that will be PMing the project.

"JPEG is the perfect format to send the person, make no changes to the
photographed images. Text should be in 300 DPI color and illustrations need to be at
least 600 DPI color. Do not save anything in B&W. Grayscale is ok for text pages
but always use color for illustrations even if the illustration is in B&W.

152

"Include EVERY blank page from the first page of print to the last page of print. This
is a DP requirement.

"... I ask (that) you do nothing more than scan the pages of the book in the future.
I/the PM have tools that will make good use of the scans and create what is needed
by DP. With a good set of scans I can do most the image work within an hour and
have the text prepped and the project checked by the end of a second hour based
on an average sized project. Special attention to illustrations is the only thing that
takes longer."

The moral of this is to find out what your PM wants before you do the work. Creating page
images and text files is not that difficult or time consuming, and if your originals are not of the
best quality the PM may prefer to do this himself.

For my first submission to DP Canada I did better. I picked a book (Inside Benchley) where the
author (Robert C. Benchley) had been dead more than 50 years. I used a flatbed scanner to
scan the pages 2-up, 300 DPI in black and white, PNG format, then used Scan Tailor to create
page images from them. I did OCR on the TIFF's that Scan Tailor had created and the text files
came out needing very little correction. (The original book was in excellent condition). I made
black and white PNG's 1000 pixels wide out of the TIFF's using Image Magick mogrify. I scanned
pages with the illustrations that Benchley had done himself as 600 DPI color JPEG's.

My PM for DP Canada turned out to be a Benchley fan with no objection to Tesseract.

While this submission was more successful than Ancient Manners turned out to be, I can't just
say to always use the approach I used with the Benchley book. Ancient Manners is too large to
be scanned 2-up, and when you scan it as 300 DPI black and white PNGs you get pages that are
not easily read by humans or OCR. Color scans would be fine, but would take days to do, and
the book had some defective pages where the inner margin was so small as to make scanning
impossible. Digital pictures with good lighting are what the book really needed. If I was doing
everything over again I would create good digital pictures with bright and even lighting, use Scan
Tailor to create page images with content in the original colors and white borders, and submit
these as high quality JPEG's to the OCR pool. I would also create extra blank pages to make up
for the missing page numbers. I would still do color scans at 600 DPI for the illustrations.

For Benchley Beside Himself, I decided to do the proofreading myself and create my own Plain
Text and HTML files. This book is filled with short humorous articles that are easy and enjoyable
to proofread.

My next submission to DP Canada was Chips Off The Old Benchley. For that one I did 2-up scans
in greyscale on a flatbed scanner, used Scan Tailor to create pages with white borders, then
used Image Magick to make JPEGs out of these. I submitted the JPEGs in a Zip file to DP Canada
without doing any OCR on them. My PM was perfectly happy to do the OCR on these using
ABBYY Fine Reader.

My latest submission to PG Canada was The Raymond Chandler Omnibus, which contains the first
four Raymond Chandler novels. I gave all the page scans to DP Canada, but informed them that
I would be doing The Big Sleep myself. When a book is that good, you don't need help to
proofread it.

In the future I will likely only do OCR on books I intend to submit directly to PG.

153

This brings me back to Ancient Manners. After almost a year had passed since I submitted the
pages to DP I looked on their site and could see no evidence that the book was even in the
queue to be worked on. I decided to take the work I had prepared and finish it myself. The
book was very difficult to work on. It had 90 illustrations, footnotes, Greek citations that
needed to be transliterated, plus accents, umlauts, ligatures, and lots of OCR errors that I could
only find by repeated readings of the text. Project Gutenberg estimates that it takes forty
hours of work to prepare an e-book for their site. I think I took twice that long. On Saturday,
June 12, 2011 the book was finally accepted. On its first day it was downloaded 21 times. By
Monday it was number 19 on the Top 100 Downloads, coming in just ahead of War and Peace. It
had been downloaded 405 times by then.

I created a custom EPUB with separated chapters, resized images, and other tweaks to create
something that could be converted to a Kindle Store-worthy MOBI file and posted it to the Kindle
Store. To date I have sold only one. A couple of weeks later I found that Amazon itself had
taken my original donation to Project Gutenberg and created a book for the Kindle Store with it.
Their book has no illustrations, but does have the captions for the illustrations. There is no
visual cue that these are captions for missing illustrations. They just look like ordinary
paragraphs, so you'll be reading along and some text you read previously is mysteriously
repeated.

The e-book is free on the Kindle Store, so at least they priced it correctly. I put in a comment
explaining the problem with the book and telling customers where they could get a nicely
formatted version of the book. The comment was accepted. That comment may have led to
my one sale.

In any case, be aware that any donations you make to Project Gutenberg may wind up on the
Kindle Store as a free book.

1. We ended up omitting the stills from the short subjects. Canadian copyright law is clear on
photographs, but not so clear on stills from movies published in books.^

154

21. CALIBRE

calibre (always spelled lower case) is a tool to manage your e-book collection. It can organize
your e-books, convert them to different formats (for instance EPUB to MOBI), and copy them to
an e-reader like the Kindle.

You can get versions of calibre for Windows, Linux, and the Macintosh. calibre comes with many
Linux distributions. If you're using Windows or the Mac you can download it here:

http://calibre-ebook.com/

The most useful thing calibre can do for us is to create a quick and easy website for publishing
an e-book collection.

 To do this all you need to do is add all your e-books to calibre using the Add button, correct the
Author and Title information as needed, and open the Preferences dialog shown below:

155

http://calibre-ebook.com/

 Push the Start Server button on this dialog and you're in business. The website will be at your
computer's IP Address, port 8080 (or whatever port you choose). The website will look like this:

The e-books in the illustration are all MOBI, because I'm using calibre for my Amazon Kindle.
However, the book server of calibre can serve any book format that Sugar supports, including
Plain Text files, EPUB's, PDF's, DjVu's, RTF's and CBZ's.

CALIBRE2OPDS

156

While calibre by itself can create a website and serve up pages, there is a better way.
calibre2opds is a software package that reads the calibre database and generates static web
pages from it that include everything you need for a website. It also includes an OPDS directory,
although not one that Get Books can make use of.

You can download the software here:

https://launchpad.net/calibre2opds

There is a .exe installer for Windows users. For Linux and the Macintosh all you need to do is
install Java and run the all platform installer like this:

java -jar calibre2opds-2.4-beta4.jar

That will launch a GUI installer that will put the software in your home directory. You'll need to
tell it where calibre is installed and give it a directory to create your website in.

Once you have the web pages created you have several options:

Copy the files to a thumb drive for an offline e-book library.
Copy the files to a Dropbox directory for a free website that can be accessed over the
Internet.
Copy the files to the webroot of an Apache or other web server for a website that can be
accessed on a private network.

An important note about using the site from a thumb drive: Sugar will mount the drive at a
location called /media/VolumeName where VolumeName is the label of the drive. It is important
that you give your thumb drive a short and meaningful volume name, like books. You may need
to format your drive to give it this name, so do that before you copy the data into it. If you do
everything right, you'll be able to use the website from the Sugar Browse Activity using the
following URL:

file:///media/books/_catalog/index.html

This is what the website looks like running from Dropbox:

157

https://launchpad.net/calibre2opds

If all you need to do is publish an e-book library on a local network calibre is the only software
you need to look at. In the next two chapters we'll look at some other options that require
more technical expertise but may be better suited for advanced needs.

158

22. THE PATHAGAR BOOK SERVER

The Pathagar Book Server is a project of developers from Sugar
Labs specifically made to publish e-books to computers running
Sugar. It is a work in progress and should be judged as such. It
does two things:

It creates an attractive website that you can use with the
Browse Activity to look for books and download them to
the Journal. (Of course computers not running Sugar can
download the books too). The website is maintained using
web forms.
It creates an OPDS (Open Publication and Distribution
System) feed that can be searched by the Get Books Activity.

This is what the website looks like:

This software has a lot of potential, but isn't ready for actual use yet. If you'd like to play with it
anyway, you'll need to install the following on your computer:

The Apache Web Server: http://httpd.apache.org/
Apache mod_wsgi: http://code.google.com/p/modwsgi/
DJango Web Framework: http://www.djangoproject.com/
Django-sendfile: http://www.sensibledevelopment.com/2010/11/django-sendfile-an-for-
abstraction-large-file-serving-in-django/
SQLLite: http://www.sqlite.org/ (also included with Python)
Python: http://www.python.org/
Git: http://git-scm.com/

All of these things can be installed on Windows and on the Macintosh, but for the easiest setup
you'll want to use Linux. Any recent Linux distribution includes most of the above software,
much of it installed by default and the rest available with no more work than checking a
checkbox. An old, discarded PC with a 14 inch monitor that has seen better days will work just
fine as a book server, and Linux is very simple to install these days.

Assuming that you have all of the above ready the next step is to get the source code for
Pathagar. Currently this is stored in something called a Git repository. You can find out the
location of this repository by looking here:

159

http://httpd.apache.org
http://code.google.com/p/modwsgi/
http://www.djangoproject.com
http://www.sensibledevelopment.com/2010/11/django-sendfile-an-for-abstraction-large-file-serving-in-django/
http://www.sqlite.org
http://www.python.org
http://git-scm.com/

http://wiki.sugarlabs.org/go/Book_Server

The URL on this page will take you to a site that lets you browse the code and which has a
Downloads button that lets you download the code as a Zip file or a tar.gz file. Choose
whichever you prefer and unpack it. It will probably unpack into a directory that is not named
pathagar. Rename it to pathagar before you continue or it won't work.

One of the files in this directory will be named settings.py. You'll want to change some lines in
that file before you can run pathagar. The only lines that really need changing are these:

ADMINS = (
 ('James Simmons', 'your_email@gmail.com'),
)

Next you'll need to run this from the command line:

python manage.py syncdb

This creates database tables and only needs to be done once. Now you can try running the
server:

python manage.py runserver

This starts a server going on port 8000. (You can start it on a different port by putting the port
number after runserver). You can open up a web browser on the same machine and point it to
http://localhost:8000 and it should bring up the Pathagar Book Server. When you're done
looking at Pathagar you can go back to the terminal and quit out of the server command by
holding down the Ctrl key and typing 'c'.

This is not the normal way you would run Pathagar. Normally the server does not run by itself.
Instead it runs under the Apache web server using a virtual host. Here is a virtual host entry I
created for my home installation:

<VirtualHost *:9000>
 # ServerName sugarlabs.simmons
 ServerAdmin myemail@gmail.com

 <Location "/">

 SetHandler python-program
 PythonHandler django.core.handlers.modpython
 SetEnv DJANGO_SETTINGS_MODULE pathagar.settings SetEnv DJANGO_SETTINGS_MODULE pathagar.settings
 PythonDebug On
 PythonPath "['/home/jim/src'] + sys.path" PythonPath "['/home/jim/src'] + sys.path"

 </Location>

 ErrorLog /var/log/apache2/pathagar-error.log

 # Possible values include: debug, info, notice, warn, error, crit,
 # alert, emerg.
 LogLevel warn

 CustomLog /var/log/apache2/pathagar-access.log combined
 ServerSignature On

</VirtualHost>

I have chosen to run Pathagar on port 9000 because I have Booki using port 8000 and OBJAVI 2
using port 80. I am using mod_python here. Make sure that everything that needs to be
written to can be written to by the apache web server, and make sure that settings.py is
executable.

The lines in bold are important. The directory specified in PythonPath must contain the directory
named pathagar that contains the code for Pathagar. In my own case I'm running the code from
my home directory, in a subdirectory called src which I use for unpacking source code archives.
If I wanted to do a more finished installation I would create a directory /var/www/pathagar and
copy everything there, and use a PythonPath of /var/www.

160

http://wiki.sugarlabs.org/go/Book_Server

I have chosen to define my virtual host as being anything with port 9000, which is a simple
solution for a home setup. A better way would be to create separate DNS names for each
Virtual Host and run everything on port 80. That way you could use the name
pathagar.myschool.edu or something like that for Pathagar.

Should you decide to imitate my own example and use port numbers, remember to specify
Listen directives in the Apache conf file for all the ports you're using, like this:

Listen 80
Listen 8000
Listen 9000

One final tip: when you create images for your e-books, use The GIMP to resize them to 100
pixels wide. If you don't do this your web browser will try to display your images as if they were
100 pixels wide, and the results will be noticeably less readable than if you had resized the image
yourself. It is not necessary to have an image for every book. Pathagar supplies a default
image for books that don't provide their own.

161

23. GENCOLLECTIONINTERFACE (GCI)

INTRODUCTION

genCollectionInterface (gCI) is a set of templates and HTML
generation tools written in Python which produce a static website
for a book collection. You can install the generated pages on a
web server, serve then using Dropbox, or put everything on a
thumb drive and browse them using the Browse Activity. The
website serves the same purpose as what you could generate
from calibre+OPDS, but it is more visually appealing.

These tools were created during the summer and fall of 2009 as part of the Rural Design
Collective's Summer Mentoring Program. The goal of the project was to enable and/or enhance
access to the Children's Book Collection of the Internet Archive on the OLPC/XO laptop platform,
especially where internet access was not available. The developers considered the state of
Sugar and the XO hardware and tried to create a usable and fun site that would appeal to
children aged 5-15.

The tool is intended to create a subset of the Internet Archive collection that can be used when
an internet connection is not available (although you will of course need an internet connection to
get the books to begin with). It is not something you can use for your own collection of books.
For that calibre is the best option.

If you want to make the Children's Book Collection available to your students you'll need a thumb
drive that can hold six gigabytes of data (or a local web server with that much disk space
available). Before you start, go to

http://ruraldesigncollective.org/lab/ui/

and check out the collection of books to see if it is something you want. The books are in the
public domain, so they are quite old and some will not find favor with a modern child. The
website at this URL is similar to, but not exactly the same as, the one you would be setting up,
so make sure you want it before continuing.

THE WEBSITE

The website is accessible to children who have just started reading while also providing features
for experienced readers. Books are organized into categories as shown below:

162

http://ruraldesigncollective.org/lab/ui/

When you click on the icon for a category you'll see the titles in it presented as icons:

The titles are displayed below the icons, and the author, date, description of the book are
displayed in a "tool tip" when the mouse pointer is over the icon. When you click the icon the
book is shown in an online book reader page (see below). That is a key difference between what
is on the RDC website and what you will be creating locally. In your local version clicking on a
book will download it and copy it to the Journal.

163

The books are in the DjVu format, which is supported by any version of Sugar later than .82.

INSTALLATION

Install the tools by downloading and unzipping the distribution archive. Do this in a dedicated
directory to avoid overwriting files. You can download the distribution archive here:

https://github.com/scottyrdc/GenCollectionInterface

On the right side of this page is a Downloads button. Choose the Download .zip option that
appears after you click on the Downloads button. Unzip the archive.

The archive contains everything you need with the exception of the books themselves. To get
those you will need to run a Python script, and before you can do that you'll need a program
called wget.

wget is installed or available for any Linux distribution. If you're using Linux then it is probably
installed already. You can also download a version of wget for Windows here:

http://gnuwin32.sourceforge.net/packages/wget.htm

The script is named dl.py and it will be found in the directory you just unzipped. It will create
directories named djvu and covers and download the e-books and their cover images into these
directories. There is over five gigabytes to download so it should take a few hours on even a
fast connection. To run the script just do this:

python dl.py

When this is finished running look for a file named index.hand-edited-example.html.txt and
copy it to the name index.html. Try loading this file into a web browser. It should bring up your
website ready to go, with all the book links pointing to your local directory. If it doesn't you'll
need to generate some pages yourself, but don't do these next steps unless you're sure you
have to.

164

https://github.com/scottyrdc/GenCollectionInterface
http://gnuwin32.sourceforge.net/packages/wget.htm

There is another script called genCollectionInterface.py which generates HTML pages and
JavaScript. Before you can run it you'll need to delete all the files ending in .html and .js from the
directory you unzipped to (but NOT the subdirectories). Once you've deleted the files you can
run the command like this (all on one line):

python genCollectionInterface.py -attached-storage search.CSV
categories.txt

You will see numerous messages as the files are parsed and output is generated, and when the
process is completed there will be a directory full of HTML and JavaScript files. The ones used for
the interface are called <Category>Category.html, for example Adventure and
AdventurersCategory.html, or for JavaScript files, <Category>ToolTip.js, for example
Adventure and AdventurersToolTip.js There's also a catch all category: Other, where
anything not in categories.txt will go.

Recreate your index.html file if you deleted it, and your site should be ready to copy to a web
server or thumb drive. An important note about the thumb drive: Sugar will mount the drive at
a location called /media/VolumeName where VolumeName is the label of the drive. It is
important that you give your thumb drive a short and meaningful volume name, like books. You
may need to format your drive to give it this name, so do that before you copy the data into it.
If you do everything right, you'll be able to use the website from the Sugar Browse Activity using
the following URL:

file:///media/books/index.html

165

ABOUT THE COLLECTION

The Internet Archive Children's Library is a digital repository of over 3,300 digital public domain
books for children from around the world. The Rural Design Collective selected a subset of these
books and created a child-friendly user interface for the OLPC XO as part of their 2009 Summer
Mentoring Program.

If you want to try creating a collection from the Internet Archive other than the Children's
Library you can read more about genCollectionInterface at:

http://ruraldesigncollective.org/lab/docs/

APPENDIX
24. Making A Book Scanner
25. Getting A Rule 6 Copyright Clearance
26. A Booki Of Your Own
27. About The Authors
28. Credits

166

http://ruraldesigncollective.org/lab/docs/

24. MAKING A BOOK SCANNER

The first three e-books I made I used the cardboard box book
scanner shown in the chapter on scanning book pages. After
three books it became clear that a better book scanner would
save me much work and improve the quality of the finished
product. It was also obvious that I would have to find a way to
make a book scanner without sawing, painting, or anything else
that would need a real home workshop. It would have to be made
by someone who could be handy mending a fuse...and that's about
it. The last time I did any serious woodworking was in Junior High,
and it isn't an experience I look back on fondly.

On the other hand, I was able to put up some curtain rods awhile
back and they turned out all right, so I figured that if the project only involved measuring, drilling
and screwing I'd be fine. I began designing my scanner by wandering around various hardware
stores waiting for the items on the shelves to speak to me. In retrospect I should have done
this at the Dollar Store. The items there speak to me too, and they're cheaper.

167

This is the book scanner I ended up building:

A book scanner consists of a cradle that holds a book open at a 90 degree angle, plus two
sheets of glass or plastic mounted at right angles to each other that press down on the book
pages and hold them flat so they may be photographed. The part that holds the pages flat is
called a platen.

The platen is generally mounted on a hinge or a column so it can be moved out of the way when
you flip the pages. This also keeps the platen in the same position relative to the camera. In
the cardboard box book scanner the position of the book was fixed, so you needed to adjust the
camera from time to time while you photograph the pages. With a proper book scanner you
don't move the camera; you move the book. Therefore the book cradle is placed on a track so
you can slide the pages of the book to where the platen needs them to be.

This view shows the platen resting on the book. The platen is made from two sheets of Lexan
precut to 11" x 14" which I found at Menard's. I got two shelf mounting brackets and used epoxy
to glue the Lexan sheets to them. The glue came undone when I tried to attach a hinge, so I
ended up using #6-32 stove bolts and nuts (1/2" long, 1/8" diameter round head) to attach the
sheets to the brackets. If I was doing it over again I would skip the epoxy and just use the stove
bolts. The brackets already had holes in the right place, and Lexan is easy to drill. I found
Lexan works as well as glass would for photographing book pages, and is much easier to deal
with.

168

This shows the detail of the platen hinge. I use another shelf mounting bracket to hang the hinge
on. The hinge is attached to the bracket with stove bolts screwed through 2" mending plates I
found at the Dollar Store. Mending plates are just small rectangles of metal with two holes. I
used a 2" long bolt with a wing nut to provide a means of adjusting the vertical position of the
platen so it fits nicely in the book. I had a package of washers left over from fixing the
windshield wipers on a car I used to have so I used a bunch of them as spacers. As you can see
I used more stove bolts and mending plates to attach the hinge to the platen bracket.

169

The book cradle is made from a couple of car floor mats I found at the Dollar Store. It is
supported by four 8x10 shelf brackets screwed into an 3/4" x 11 3/4" x 24" white shelf I found at
Menard's. I used #8 x 3/4" brass round head wood screws. You need to position the shelf
brackets 4" apart so that when the floor mats rest on them each one is at a 45 degree angle.
Also, not every floor mat is suitable for this purpose. You need something stiff that can hold a
book without sagging. These mats have a stiff plastic backing. If you can't find floor mats like
this use something else, as long as it is stiff. As you can see, I stuck some small shelf brackets
underneath the mats for extra support.

The mats are stitched together with plastic tie-downs like you use to hold wires in place.
Additional tie-downs are used to attach the mats to the shelf brackets.

I use another white shelf for the base, this one 3/4" x 15 3/4" x 36". I use a desk lamp with an
incandescent bulb, 100 watts, and I screw the base of the lamp into the book scanner base. I
use the clamp for the desk lamp to hold the book scanner base to the table, and use a small C-
clamp for more stability.

170

This shows what the platen looks like in the up position.

You need to have some kind of track for the book cradle base to slide back and forth on. Most
of the designs at diybookscanner.org use drawer sliders for this purpose, but one design I saw
there just used two pieces of plastic to hold the cradle base in a straight line and plastic furniture
sliders to provide easy low friction movement. I liked this idea a lot, and I found some plastic
rulers with a ridge down the middle of them at the Dollar Store that would make a nice track for
the cradle. I attached them to the base with wood screws. You probably won't be able to find
the rulers I found, so just improvise.

171

http://diybookscanner.org

I use a 5 megapixel camera on a tripod to photograph the book pages. If I found a suitable table
I could use two cameras on tripods to do all the pages in one pass. Digital cameras and tripods
are pretty cheap these days.

Last, but not least, you need a flat platform at the bottom of the cradle to hold the spine of the
book level, like this:

 As you can see, I just stuck a few batteries in the bottom of the "V". I may come up with
something more presentable in the future, but for now the batteries are doing fine.

172

Here is a view showing the clip-on desk lamps I added to the scanner. Having just one overhead
lamp creates a bright spot in the middle of the page which the camera uses to adjust the
exposure, resulting in pages that are dingy. Adjusting the exposure compensation on the camera
just washes out the middle of the page. What you really need is a page that is evenly lit, which
having three light sources like this should provide. The clip-on lamps are cheap, about five
dollars at Menard's. The lamps are supposed to use 60 watt bulbs to minimize the risk of fire,
but I put 75 watters in because I like to live dangerously.

173

Here is the Bill Of Materials:

 Qty Description Unit Cost

 1 white shelf 3/4" x 15 3/4" x 36" 5.00

 1 white shelf 3/4" x 11 3/4" x 24" 3.97

 4 8x10 shelf brackets .78

 1 package #8 x 3/4" brass round head wood screws .78

 1 package of 4 24mm x 100 mm (5/16" x 4") furniture sliders 6.98

 1 package 3" strap hinge, light 2.49

 1 package plastic wire tie-downs 1.00

 1 package #6-32 stove bolts, round head with nuts 1.00

 1 package of 4 2" mending plates (Dollar Store) 1.00

 1 set black floor mats (Dollar Store) 14.00

 1 desk lamp with adjustable arm 30.00

 2 clip-on desk lamps 5.00

 1 package of 3 plastic rulers (Dollar Store) 1.00

 2 Lexan sheets, 11" x 14" 8.00

 4 black shelf supports, 6" x 6" 1.00

 1 black shelf support, 8" x 8" 1.00

 1 C-clamp 1.00

174

25. GETTING A RULE 6 COPYRIGHT

CLEARANCE
If you have a book published after 1922 and you want to know if it
is in the public domain somewhere (not necessarily where you live)
there are really only two possibilities:

In Canada, a book becomes public domain 50 years after the
year of the author's death. Thus you could donate the book
to PG Canada and it could be legally downloaded in countries
with similar copyright laws.
In the U.S. books published 1923-1963 and authored by U.S.
citizens must have their copyrights renewed in their 28th
year. If the book isn't renewed it goes into the public
domain in the U.S. and may be donated to Project Gutenberg or the Internet Archive.
When you attempt to prove to PG that this has happened for a book you are requesting a
"Rule 6" clearance.

The Project Gutenberg Rule 6 HOWTO says:

"Based on our review of the US Library of Congress' historical renewal records, we
estimate that over 85% of all registered books are never renewed, yet it is still quite
important to follow all the procedures below to make a safe judgment about a book's
copyright status."

A Rule 6 clearance is a fair amount of work to prepare, and will take longer to get approved.
There are currently two people checking copyright clearance requests, and the person who
checks Rule 6 clearances generally does it only once a month, so a clearance will take longer to
get. The person who checks Rule 6 clearances will have to do the same work you do to prepare
the submission, so it is important that you do a careful job yourself. It would be a good idea to
do several pre-1923 submissions before your first Rule 6 submission.

If the author has been dead 50 years it would make sense to donate the book to PG Canada
instead. Those clearances go quickly because checking when an author died is not as difficult.

As a matter of policy PG will not do a Rule 6 clearance for a book by an author who was not a
U.S. Citizen when the book was written. Technically Rule 6 would apply if the book was
published in the U.S. before or at the same time it was published elsewhere, but that's pretty
much impossible to verify so PG will reject clearance requests for such authors. One of the first
things you should do is find out if the author was a U.S. citizen.

The second thing you should do is check either the Stanford copyright renewal database or the
Rutgers one, or both. The Stanford database is at:

http://collections.stanford.edu/copyrightrenewals/bin/search/simple

and the Rutgers one is at:

http://comminfo.rutgers.edu/~lesk/copyrenew.html

175

http://collections.stanford.edu/copyrightrenewals/bin/search/simple
http://comminfo.rutgers.edu/~lesk/copyrenew.html

The Stanford database is considered to be the more reliable of the two. If the renewal shows up
in either of these databases then you can't do a Rule 6 clearance. In an ideal world if your
author is a U.S. citizen and the renewal does not show up in either of these searches you'd be
set to go. The world is not ideal. If you get past these hurdles you still have a lot of checking to
do. The requirements for doing a Rule 6 submission change from time to time, so you should
check the latest articles on the PG and DP websites for the current requirements.

The official Rule 6 HOWTO is here:

http://copy.pglaf.org/rule6-new.txt

Some other resources are at the Distributed Proofreaders website:

http://www.pgdp.net/wiki/PGRule6

http://www.pgdp.net/wiki/PGRule6/DetailedRule6Procedure

http://www.pgdp.net/wiki/PGRule6/Rule6Template

The last link is a template of the wording that you can paste into the form you use to submit
your TP&V. It refers to stories published in magazines then later published as a book, which is
probably more complex than most submissions, so you can remove parts which are not
applicable. (A large percentage of Rule 6 submissions are stories from Science Fiction
magazines).

Here is the template in its entirety:

"This is boilerplate for reporting Rule 6 research for a story first published in a
magazine, then later published in a book which we plan to use as the source to clear.
Only use LOC website if needed. Only use 11800 if needed. The claimed copyright
dates control this.

"Rule 6 clearance.

"[TITLE] by [AUTHOR]

"Originally published in [VENUE AND DATE OF FIRST PUBLICATION].

"[AUTHOR'S FULL NAME] born on [AUTHOR'S BIRTHDATE & YEAR], in [AUTHOR'S
BIRTH LOCATION] and was therefore a U.S. citizen. [CITE SOURCES, e.g. Both
Contemporary Authors and St. James Guide to Science Fiction Writers have entries
for him.]

"The edition I want to clear is a [CURRENT PUBLISHER] reprint from [YEAR OF
PUBLICATION] with a [YEAR OF COPYRIGHT] copyright notice. [TITLE] was first
published in the [MONTH AND YEAR] edition of [MAGAZINE TITLE] with the author as
[PSEUDONYM NAME]. It's first book printing was in the [YEAR OF BOOK
PUBLICATION] [BOOK PUBLISHER] of [BOOK TITLE].

176

http://copy.pglaf.org/rule6-new.txt
http://www.pgdp.net/wiki/PGRule6
http://www.pgdp.net/wiki/PGRule6/DetailedRule6Procedure
http://www.pgdp.net/wiki/PGRule6/Rule6Template

"I have searched the Copyright Renewal Records at the library of congress web site
for the following words as a title search: [TITLE] [ALTERNATE TITLE OR SUBTITLE]
and the following words as an author search [LAST, FI], [LAST, FIRST], [PSEUDONYM
LAST, FIRST], [PSEUDONYM LAST, FI] and the following words as a claimants search:
[ORIGINAL PUBLISHER] and have found no indication that this story's copyright in
[YEAR OF FIRST PUBLICATION] was renewed. I have also searched "The catalog of
Copyright Entries" periodicals volume in the years [YEAR + 26], [YEAR + 27], [YEAR +
28] and [YEAR + 29] for a renewal of [MAGAZINE OF FIRST PUBLICATION] and have
searched 11800-8.txt for the words [RARE WORD FROM TITLE], [AUTHOR'S FIRST
NAME] near [AUTHOR'S LAST NAME] and have found no indication that this book's
copyright in [DATE OF FIRST PUBLICATION] was renewed.

"I have also reviewed the materials in the book relating to the nationality of the
author and have found no reason to believe that any of the authors was a foreign
national."

One final note: if you can't get a Rule 6 clearance from Project Gutenberg but have reason to
believe the book deserves one, you can still donate it to the Internet Archive, and you should.

177

26. A BOOKI OF YOUR OWN

REASONS FOR HAVING YOUR OWN BOOKI

For most it will not be necessary to have their own Booki
software, and every reason not to. Setting up your own Booki and
backing up the data on a regular basis is a significant amount of
work, and if you're going to share your work with the world there
is really no reason not to use the shared Booki as well.

If you're not going to share, then having your own Booki makes
sense. If you don't have reliable access to the Internet having
your own Booki might make sense as well. A school with XO
laptops that can connect to each other on a network but not to the Internet might find a local
copy of Booki quite valuable. In my own case I set up Booki on a computer at home and another
at the office.

My day job involves teaching people how to use software I have written. Teaching people can be
a challenge, and teaching people who live and work on the other side of the Earth is a greater
challenge. We had been using articles on a website, plus a Wiki, to contain the training materials,
but after writing two FLOSS Manuals I came to the conclusion that what my company needed
was an honest to gosh Manual. I got permission to investigate using Booki for that purpose.

I installed the software at home because:

I wanted the work install to go as quickly and smoothly as possible
I want, eventually, to write a book that I will not share with the world. After self-publishing
my first FLOSS Manual on Lulu I honestly felt that it would be easier to use Booki to lay
out this book (working title: Jim's Oprah Book) than to do the same thing with Open Office
or MS Word.

If your reasons are like mine, then let's set up our own Booki!

178

GETTING THE SOFTWARE

You will need a recent version of Linux to run Booki on. Windows or a Mac will not run Booki.
You won't need much of a computer to run it on. The computer I used at home was a
refurbished IBM NetVista which I had bought online for about a hundred dollars. The computer at
work was a discarded desktop model which was even older. I would not recommend trying to
install this software on an XO laptop, but any desktop computer made in the last few years
should be fine.

I used Fedora 13 for these Booki installs, but I don't recommend it. Fedora is used on the XO
laptops, and since I write software for that platform I use it on my desktop computers as well.
The downside of Fedora is that, so far, every time I've upgraded to a new version of Fedora I've
had to back up all my data and do a complete reinstall. Other than this, the different brands of
Linux are more or less the same. If I was going to recommend a Linux for Booki my choices in
order would be:

Whatever Linux you already have
Ubuntu. If you've never used Linux, this is probably the easiest, and I have had good
experiences with it.

The rest of these instructions will assume that you have Linux installed and have become
comfortable running it. Getting comfortable with Linux is the subject for another book, so if
you've never used Linux it would be a good idea to find someone who has to help.

Often the install program for Linux will ask if you intend to use it as a web server or if you are
doing programming or if you want office software. Answering "Yes" to all three will save some
time.

There are actually two parts to Booki, and you'll need both:

Booki itself
OBJAVI 2, the part that creates PDF's, EPUBs, etc from your Book.

installing most software on Linux is no more difficult than checking a check box on an
Add/Remove Software dialog, but when software is still under development like Booki is you'll
need to get the source code and work with that. The source code for both is kept in a Git
repository, so you'll want to have Git installed. Once you do, you can create a "src" directory in
your home directory and from in that directory run these commands:

git clone git://booki-dev.flossmanuals.net/git/booki.git
git clone git://booki-dev.flossmanuals.net/git/objavi2.git

This will create two directories under "src": booki and objavi2, which will contain the source code
for these products.

It is also possible to get the code without using Git, which may be necessary if your company
firewall doesn't let you access the repository. To do that go to this URL:

http://booki-dev.flossmanuals.net/git?p=booki.git;a=tree

In the upper left of the page is a link named "snapshot". Click on this link to get the latest code
in a tar.gz archive and unpack it into your "src" directory, then rename the directory this gives
you to "booki". Then use this URL and the same procedure to get the code for OBJAVI:

http://booki-dev.flossmanuals.net/git?p=objavi2.git;a=tree

Before you can continue, you'll need to check the README.txt file in Booki and the INSTALL file
in OBJAVI 2 to find out what other software you'll need to install. For Booki the list is:

179

http://booki-dev.flossmanuals.net/git?p=booki.git;a=tree
http://booki-dev.flossmanuals.net/git?p=objavi2.git;a=tree

django
django south
wsgi
apache2
php5
python-simplejson
sqlite
redis
aspell plus dictionaries for the languages you will use.

If you're lucky the latest redis will be included as a package in your distribution. Fedora users so
far are not so lucky. They will need to download the latest source code from
http://code.google.com/p/redis/ and compile it using the Makefile in the time honored manner:

make
sudo make install

If you installed it from a package in your distribution you should check the Services to see that it
is enabled and running. If you compiled from source you can start it up like this (running as root):

redis-server &

You'll want to run this command every time your computer boots up. For Fedora 13 you can put
this command in /etc/rc.d/rc.local.

For OBJAVI the list is:

lxml
pdfedit (4.1+)
xvfb
fontconfig
pdftk
psutils
poppler-utils or xpdf-utils
wkhtmltopdf
open office 3
some fonts

You can get everything from your distribution's packages except wkhtmltopdf. That you'll need
to download from http://code.google.com/p/wkhtmltopdf/. You should get a precompiled binary
and copy it to the /usr/local/bin directory as user root.

When you set up Linux you should get fonts as part of the basic install, but it would be a good
idea to install more. In Fedora the Add/Remove Programs dialog has a section for Fonts that
has over a hundred free fonts that you can install. If you use the Roman alphabet only you can
limit yourself to the Latin fonts.

DISABLE SELINUX

Fedora 12 and later has SELinux. SELinux is to Linux is as Aunt Polly is to Huckleberry Finn. Its
job is to keep programs, including the Apache Web Server, from doing things they should not.
Even without SELinux Linux is pretty secure. The web server runs as a user (in Fedora's case
the user is named "apache") and it is only allowed to do what that user is allowed to do. On a
personal or corporate network this is generally enough.

180

http://code.google.com/p/redis/
http://code.google.com/p/wkhtmltopdf/

What SELinux does is add an extra layer of protection. Programs are expected to do certain
things. If a program tries to do something that SELinux is not expecting, then SELinux stops it.
To get around this you have to tell SELinux to expect this behavior from this specific program.
Then it will be allowed. This extra layer of protection makes it more difficult for a malicious
programmer to break the system. Sooner or later he will have to do something SELinux is not
expecting. He will be stopped and his actions will be logged.

As commendable as this is, if you have a program that does more than a few unusual things
SELinux will be a real challenge. OBJAVI falls into that category. It would be a great deal of work
to get SELinux to tolerate all the things that OBJAVI is likely to do, and if you're running it on a
private network there wouldn't be much benefit. We disable SELinux by editing a file
/etc/selinux/config as user root. The file should look like this:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=disabledSELINUX=disabled
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

Change the value of SELINUX to disabled, save the file and reboot your computer.

CONFIGURE BOOKI AND OBJAVI 2

Booki recently got a much improved setup script. This will install most of booki under the
directory /var/www/mybooki, which is as good a place as any. The rest of it will run out of
whatever directory you put the source code in. In my case this was /home/jds/src/b ooki-
HEAD-9db92a6, because I downloaded a snapshot and unpacked it. You might want to rename
the directory to be simply booki, but you don't have to.

You'll need to create a directory named /var/www/mybooki to copy everything into. Chances
are you'll need to be the root user to do this. However, you need to change the ownership of
this directory so that you, as yourself, can copy things into it and so the apache web server can
write to it. I did this with this command:

 chown jds:apache /var/www/mybooki
 chmod 664 /var/www/mybooki

jds is my own account, and apache is the group the apache web server belongs to in Fedora. (It
may be different in other Linux distributions). The chmod 664 means that both jds and
members of the group apache may modify the contents of this directory.

It is important when creating content in this directory to make sure all of it is group owned by
apache.

As yourself, change to the scripts directory within the directory where you have your booki
source code and run this:

./createbooki --database sqlite /var/www/mybooki/

This will copy a bunch of stuff to /var/www/mybooki. Now change to that directory and you'll
see that it contains a file named settings.py. There are several places you'll need to modify in
this file. First is the doc root:

BOOKI_ROOT = '/var/www/mybooki' # edit this

Next you need to set up some URL's:

use this objavi server
OBJAVI_URL = "http://127.0.0.1/objavi.cgi"
ESPRI_URL = "http://127.0.0.1/espri.cgi"

181

TWIKI_GATEWAY_URL = "http://127.0.0.1/booki-twiki-gateway.cgi"

#the name of the booki server (comment out to use os.environ['HTTP_HOST'])
THIS_BOOKI_SERVER = '127.0.0.1:8000'

IP Address 127.0.0.1 is of course the localhost IP address. It is likely that you will want to change
this to the IP address of your computer so that you can use Booki on the network. You can of
course use a DNS name rather than an IP address.

Notice that we have Booki running on port 8000. We need to set up virtual hosts for both Booki
and OBJAVI. If you can give each one its own IP address or DNS name there is no reason you
can't run both on port 80 like a normal web application. If everything has to use the same IP
address then you can distinguish your virtual hosts from each other using a port number. Note
that OBJAVI has to run on port 80, but Booki can use any port. There is nothing magic about
the number 8000. It just needs to be a port that nothing else is using. In the office I use port
86.

Next we have to set up the database entries:

DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = '/var/www/mybooki/database.sqlite'DATABASE_NAME = '/var/www/mybooki/database.sqlite' # Or path to database
file if using sqlite3.
DATABASE_USER = '' # Not used with sqlite3.
DATABASE_PASSWORD = '' # Not used with sqlite3.
DATABASE_HOST = 'localhost' # Set to empty string for localhost. Not used with
sqlite3.
DATABASE_PORT = '' # Set to empty string for default. Not used with sqlite3.

Booki can be used with Sqlite3 or Postgres. If you are willing to tinker with the code you could
get it to run with just about any database. Sqlite3 is the easiest to set up and is completely
adequate for Booki on a small private network. The only entry you need to be concerned with is
DATABASE_NAME, which is set to put the database in a directory that can be read and written
to by user apache. There is no need to create the database file. Booki will create it.

Now from the command line, as yourself, run this:

. ./booki.env

Notice that there are two periods on that line, separated by a space. If you just use one the
environment variables needed by the next step will NOT be set.

Now run this:

django-admin syncdb

This will create your database tables. In the middle of doing this it will ask you if you want to
create a superuser account. You do not. If you answer "yes" it will prevent the rest of the
database initialization from happening. Reply "no" when asked.

To finish up the database initialization you need to run this:

django-admin migrate

Now you can create the superuser you skipped creating before:

 django-admin createsuperuser

After that you can run Booki itself and check it out. First run this as yourself:

./manage.py runserver

Once this is running you should be able to point your web browser to http://127.0.0.1:8000 and
see Booki in operation. You should also go to http://127.0.0.1:8000/admin and add a license like
this (after signing in as the superuser you created):

182

http://127.0.0.1:8000
http://127.0.0.1:8000/admin

You can fool around with Booki some more if you like, but be aware that this is not an adequate
way to run Booki. You really need to run it under a virtual host in Apache. manage.py only
supports one user at a time, and is only good as a quick sanity check to make sure everything is
set up correctly. When you're done looking at Booki you can kill manage.py by pressing Ctrl-C in
the terminal where you started it.

Next we need to configure OBJAVI. You'll probably want to run objavi out of a directory like
/var/www/objavi. This means you'll want to set up this directory similarly to the one you
created for booki, with the same permissions, and you'll copy the objavi source code there.
Before you do, be aware that the objavi/tests directory may contain subdirectories with epub
examples that take up over 100 megabytes! You'll have no use for these, so be sure and delete
the files before you copy the files to /var/www/objavi.

OBJAVI has its own configuration file, objavi2/objavi/config.py. You'll need to change some
settings in this file, create some new directories, and make the directories readable and writable
by the apache group. The first setting to change is this one:

WKHTMLTOPDF = '/usr/local/bin/wkhtmltopdf'

When you downloaded the binary for wkhtmltopdf it may have had a name like wkhtmltopdf-
static or something else. Change the value of WKHTMLTOPDF to whatever name it has in
/usr/local/bin. (In my case I had renamed it to wkhtmltopdf, which hurt nothing).

The biggest change is to add an entry to SERVER_DEFAULTS. The first entry for '127.0.0.1:8000'
is my own new entry. Use the actual IP address (or the DNS name) of your machine if you're
going to use it over the network.

SERVER_DEFAULTS = {
 '127.0.0.1:8000127.0.0.1:8000 ': {
 'css-book': '/static/simmons.css','css-book': '/static/simmons.css',
 'css-web': '/static/en.flossmanuals.net-web.css',
 'css-newspaper': '/static/en.flossmanuals.net-newspaper.css',
 'css-openoffice': '/static/en.flossmanuals.net-openoffice.css',
 'lang': 'en',
 'dir': 'LTR',
 'toc-encoding': None,
 'display': True,'display': True,
 'interface': 'Booki',
 'toc_header': 'Table of Contents',
 },
 'booki.flossmanuals.net': {
 'css-book': '/static/en.flossmanuals.net.css',
 'css-web': '/static/en.flossmanuals.net-web.css',
 'css-newspaper': '/static/en.flossmanuals.net-newspaper.css',
 'css-openoffice': '/static/en.flossmanuals.net-openoffice.css',
 'lang': 'en',
 'dir': 'LTR',
 'toc-encoding': None,
 'display': False,'display': False,
 'interface': 'Booki',
 'toc_header': 'Table of Contents',

183

 },
}

The entries that I changed are in bold. I use my own style sheet when creating PDFs for books,
and you may wish to do that too. I indicate that I want to display this server in OBJAVI's list of
servers and that I don't want to display the other entries. You'll see why in a minute.

You need to create some directories under objavi2/htdocs and make certain they can be read
and written to by the apache group:

books
booki-books
progress
tmp

You'll also need to make certain that the static directory already in objavi2/htdocs is writable
by the apache group. Finally, you'll need to set up a log directory under objavi2 and make sure
that apache can create files there too.

SETTING UP APACHE VIRTUAL HOSTS

The simplest way to get Booki and OBJAVI 2 running under the Apache web server is to set up
virtual hosts. What I did was to edit the /etc/httpd/conf/httpd.conf file as the root user using
gedit. It is also possible to make configuration files outside of httpd.conf that will be loaded by
Apache automatically. For Fedora 13 you could make separate files for each virtual host and put
them in directory /etc/httpd/conf.d. (When I got everything working on my Booki install I
moved the virtual host entries to files named booki_vh.conf and objavi_vh.conf respectively).

The entries I put at the end of httpd.conf looked like this:

Listen 8000

<VirtualHost *:8000>
 # CHANGE THIS
 ServerName booki.myhost.com
 SetEnv HTTP_HOST "booki.myhost.com"

 SetEnv LC_TIME "en_GB.UTF-8"
 SetEnv LANG "en_GB.UTF-8"

 WSGIScriptAlias / /var/www/mybooki/booki.wsgi

 <Location "/">
 Allow from all
 Options FollowSymLinks
 </Location>

 Alias /static/ "/var/www/mybooki/static/"
 <Directory "/var/www/mybooki/static/">
 Order allow,deny
 Options Indexes
 Allow from all
 IndexOptions FancyIndexing
 </Directory>

 Alias /site_static/ "/home/jds/src/booki/lib/booki/site_static/"
 <Directory "/home/jds/src/booki/lib/booki/static/">
 Order allow,deny
 Options Indexes
 Allow from all
 IndexOptions FancyIndexing
 </Directory>

 Alias /media/
 "/usr/lib/python2.6/site-packages/django/contrib/admin/media/"
 <Directory
 "/usr/lib/python2.6/site-packages/django/contrib/admin/media">
 Order allow,deny
 Options Indexes
 Allow from all
 IndexOptions FancyIndexing

184

 </Directory>

 <Location <Location
 "/site_media/xinha/plugins/SpellChecker/spell-check-logic.php"> "/site_media/xinha/plugins/SpellChecker/spell-check-logic.php">
 SetHandler application/x-httpd-php SetHandler application/x-httpd-php
 </Location> </Location>
 <Location <Location
 "/site_media/xinha/plugins/SpellChecker/spell-check-savedicts.php"> "/site_media/xinha/plugins/SpellChecker/spell-check-savedicts.php">
 SetHandler application/x-httpd-php SetHandler application/x-httpd-php
 </Location> </Location>
 <Location "/site_media/xinha/plugins/SpellChecker/aspell-setup.php"> <Location "/site_media/xinha/plugins/SpellChecker/aspell-setup.php">
 SetHandler application/x-httpd-php SetHandler application/x-httpd-php
 </Location> </Location>

 ErrorLog /var/log/apache2/booki-error.log
 LogLevel warn
 CustomLog /var/log/apache2/booki-access.log combined

</VirtualHost>

<VirtualHost *:80>
 ServerAdmin myname@gmail.com
 # limit MEM to 800 million bytes
 RLimitMEM 800000000

 #Sometimes it takes a while. Wait.
 TimeOut 600

 DocumentRoot /var/www/objavi/htdocs
 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>
 <Directory /var/ww/objavi/>
 Options +All +ExecCGI
 AllowOverride None
 Order allow,deny
 Allow from all
 AddHandler cgi-script .cgi
 # Remove output filters in case mod_deflate is being used.
 RemoveOutputFilter .cgi
 </Directory>

 DirectoryIndex index.html objavi.cgi
 ErrorLog /var/log/apache2/objavi-error.log

 # Possible values include: debug, info, notice, warn, error, crit,
 # alert, emerg.
 LogLevel warn

 CustomLog /var/log/apache2/objavi-access.log combined
 #ScriptLog /tmp/objavi-cgi.log

</VirtualHost>

A Virtual Host is a way of making Apache act like more than one web server. We have one
Virtual Host for Booki, and one for OBJAVI 2. When you set up a Virtual Host you need some
way for Apache to know which host is needed for a given request. You can do this by giving
your server more than one IP address, more than one DNS name, or in my case more than one
port. The Listen directive at the top says that we will be listening at port 8000 in addition to
the normal HTTP port 80. When a request comes in on port 8000 it will go to Booki and when it
comes in on 80 it will go to OBJAVI 2. Again, OBJAVI 2 must run on port 80.

For Booki we're using the wsgi plugin for Apache, so make sure it's installed.

The createbooki script will make two files you can use for your virtual host, and you'll find them
in /var/www/mybooki. The first one is booki.wsgi, and you can see we refer to it in the virtual
host entry above. The second file is wsgi.apache. This contains the entry for the virtual host
itself. You can use this as the virtual host entry, but you'll need to make some modifications.
My example virtual host entries should give you some idea of what you'll need to modify. Pay
attention to the lines in bold in the example. They should be in your booki virtual hosts entry.
If the wsgi.apache file doesn't have them, add them. They are responsible for the spell check
function of the Booki web page editor.

185

USING OBJAVI 2

If you've done everything right you should be able to go to http://127.0.0.1:8000 and see Booki
running, and go to http://127.0.0.1 and see OBJAVI 2 running. OBJAVI 2 looks like this:

OBJAVI is run from within Book from the Export tab when you're editing a book. If all you want
to do is create PDF's and EPUBs you may never need to look at this page. There is one thing
you can do from here that you can't do from Booki's Export tab, and that is to create output as
Templated HTML. To do that you choose Templated HTML as the Document Type.

Templated HTML is not a kind of e-book, but it is worthy of a brief mention. One of the ways
that Booki is different from Wikis like Media Wiki (used for Wikipedia) is that with a normal Wiki
anyone can edit any document and the edit is available to the readers of the Wiki instantly. A
normal static website makes it easy to control who can update the content, but this control
means that updating the content is more work. What Booki introduces is the idea of generating
a static website from a Wiki. The Wiki is used by the book authors but is not seen by the book's
audience. When the authors have something ready to publish to the world they use OBJAVI to
generate a static website and copy it to the public web server.

By default the HTML looks like the FLOSS Manuals website. Because it is generated using
templates, you can easily add your own stylesheets, corporate logos, and the like to make the
generated site look the way you want it to.

You should definitely think about creating a templated HTML version of your book if the contents
are likely to be updated frequently. The website version of your book can then act as a
supplement to the e-book version. The stable content will be in the e-book and the latest minor
tweaks and corrections will be on the website.

186

http://127.0.0.1:8000
http://127.0.0.1

27. ABOUT THE AUTHORS

James Simmons has been an avid reader since his childhood, in
spite of being placed in the lowest reading group in every grade
because of his August birth date. (The teachers generally moved
him to the middle group a month later). In the second grade he
achieved recognition for being the only student in his class who
knew what "porridge" was. His favorite reading was science fiction
and books on science. In the sixth grade he discovered the books
of Alfred Powell Morgan and began a love affair with radio and
electronics that would continue well into the seventh grade. In the
eighth grade he discovered the works of Ray Bradbury, Robert A. Heinlein, and Arthur C. Clarke.
By the time he was assigned to read The Martian Chronicles in high school he had already read it
three times and felt that he understood that book better than his teacher ever would. In
retrospect he would have done well to keep this opinion to himself.

A friend he made in college encouraged him to try his hand at writing science fiction stories. He
had no talent for fiction writing, but he did manage to write a fan letter to Galaxy magazine
demanding more stories by Howard L. Myers. James did not know it at the time, but the story
he had admired so much had been published two years after the author's death.

While James did not fare well writing fiction, he would eventually do better writing computer
programs. He wrote three e-book related Activities for the One Laptop Per Child project: Read
Etexts, View Slides, and Get Internet Archive Books. He used what he learned doing this to
write Make Your Own Sugar Activities!, a manual on creating Activities for the Sugar platform that
is considered the definitive book on the subject, pretty much by default.

James' mother really did tell him that "The readers are the leaders." This was a slogan used by
a woman trying to sell his mother a set of encyclopedias. His mother did not buy the
encyclopedias.

Oceana Rain Fields is a visual artist and creative spirit with a flair for the unexpected and the
desire to support worthy causes with her art. She graduated in 2010 from Pacific High School,
earning several notable scholarships. In 2010, her painting “Malaria” won first in show in the
Vision 2010 high school art competition at the Coos Art Museum in Coos Bay, Oregon. Oceana
plans to continue her art education at Southwestern Oregon Community College in Fall 2010. As
a Rural Design Collective mentee she did the art featured in this book, including the pictures at
the top of each chapter and front and back cover illustrations for a limited edition printing done
by the Collective for their backers.

Rebecca Hargrave Malamud, founder of the Rural Design Collective, is an award-winning
designer, creative director, open source advocate and artist. She has a proven track record in
advancing large-scale Internet projects, and has contributed her talents to several meaningful
open source initiatives that have an ongoing impact on the future of technology and society:
http://sixes.net/rdcHQ/about/rebecca-hargrave-malamud/

187

http://sixes.net/rdcHQ/about/meet-the-rdc/oceana-rain-fields/
http://sixes.net/rdcHQ/about/rebecca-hargrave-malamud/

28. CREDITS

All chapters copyright of the authors (see below). Unless otherwise
stated all chapters in this manual licensed with GNU General
Public License version 2

This documentation is free documentation; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This documentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
documentation; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

AUTHORS

A BOOKI OF YOUR OWN
© James Simmons 2010

ABOUT THE AUTHORS
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

BEFORE WE BEGIN
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

BOOKI
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

CONVERTING YOUR OWN DOCUMENTS
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

GETTING A RULE 6 COPYRIGHT CLEARANCE
© James Simmons 2010

188

Modifications:
Christopher garcia 2010
Oceana Fields 2010

COPYRIGHTS, LICENSES, AND FAIR USE
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

CREDITS
© adam hyde 2006, 2007
Modifications:
James Simmons 2010
Oceana Fields 2010

DONATING E-BOOKS TO THE INTERNET ARCHIVE
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010

DONATING TEXTS TO PROJECT GUTENBERG
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

FREE E-BOOK FORMATS
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010

GEN COLLECTION INTERFACE GCI
© Rebecca Malamud 2010
Modifications:
Christopher garcia 2010
James Simmons 2010
Oceana Fields 2010

READING AND LEADING WITH ONE LAPTOP PER CHILD
© James Simmons 2006, 2007
Modifications:
Christopher garcia 2010
James Simmons 2010
John Curwood 2010
Oceana Fields 2010
Rebecca Malamud 2010

MAKING A BOOK SCANNER
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010

189

MAKING CBZ'S
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010

MAKING DJVU'S
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

MAKING EPUBS
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010

MAKING PDF'S
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

MAKING PLAIN TEXT FILES
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

THE PATHAGAR BOOK SERVER
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010

INTRODUCTION
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010

SCANNING BOOK PAGES
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

SOURCES FOR FREE E-BOOKS
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

190

SUGAR ACTIVITIES FOR FINDING E-BOOKS
© James Simmons 2010
Modifications:
Christopher garcia 2010
John Curwood 2010
Oceana Fields 2010
Rebecca Malamud 2010

THE READ ACTIVITY
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

THE READ ETEXTS ACTIVITY
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010
Rebecca Malamud 2010

THE VIEW SLIDES ACTIVITY
© James Simmons 2010
Modifications:
Christopher garcia 2010
Oceana Fields 2010

Free manuals for free software

GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software--to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to your programs, too.

191

http://www.flossmanuals.net/

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in the term
"modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed

192

the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at
no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a
whole which is a work based on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an offer,
in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

193

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions on
the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to
the author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program under
this License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

194

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of this License, you may
choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

195

	AN E-BOOK REVOLUTION
	1. READING AND LEADING WITH ONE LAPTOP PER CHILD
	E-BOOKS ON THE XO LAPTOP
	THE PURPOSE OF THIS BOOK
	FORMATS FOR THIS BOOK

	2. SOURCES FOR FREE E-BOOKS
	PROJECT GUTENBERG
	THE INTERNET ARCHIVE
	FEEDBOOKS
	THE RURAL DESIGN COLLECTIVE
	MANYBOOKS.NET
	THE BAEN FREE LIBRARY
	MUNSEY'S
	FREE LITERATURE

	3. FREE E-BOOK FORMATS
	PLAIN TEXT
	PORTABLE DOCUMENT FORMAT (PDF)
	IMAGE CONTAINER PDF'S
	COMIC BOOK ZIP (CBZ)
	DJVU
	RICH TEXT FORMAT (RTF)
	EPUB
	MOBI

	4. SUGAR ACTIVITIES FOR FINDING E-BOOKS
	INTRODUCTION
	GET BOOKS
	GET INTERNET ARCHIVE BOOKS
	READ ETEXTS

	5. THE READ ACTIVITY
	6. THE READ ETEXTS ACTIVITY
	THE READ TOOLBAR
	THE ACTIVITY TOOLBAR
	THE EDIT TOOLBAR
	THE VIEW TOOLBAR
	THE SPEECH TOOLBAR
	THE BOOKS TOOLBAR

	7. THE VIEW SLIDES ACTIVITY
	READ SD COMICS

	8. BEFORE WE BEGIN
	PYTHON PROGRAMS

	9. CONVERTING YOUR OWN DOCUMENTS
	PDF'S
	PLAIN TEXT FILES

	10. BOOKI
	A FEW THOUGHTS ON COLLABORATION
	USING BOOKI TO CORRECT INTERNET ARCHIVE EPUBS
	THE REPLACING TEXTBOOKS PROJECT

	11. SCANNING BOOK PAGES
	FLATBED SCANNER OR DIGITAL CAMERA?
	THE POST PROCESSING FORK IN THE ROAD
	THE ROAD LESS TRAVELLED
	THE EASIER ROAD: SCAN TAILOR

	12. MAKING PDF'S
	CREATING PDFS FROM PAGE IMAGES
	MAKING YOUR PDF'S SMALLER
	OPTIMIZING PAGE SIZES

	13. MAKING CBZ'S
	CREATING THE ARCHIVE

	14. MAKING DJVU'S
	INTRODUCTION
	DJVU LIBRE

	15. MAKING PLAIN TEXT FILES
	OPTIONS FOR CREATING PLAIN TEXT FILES FROM SCANNED BOOK PAGES
	OCR SOFTWARE
	AUTOMATICALLY FIXING COMMON PROBLEMS WITH GUIPREP
	PROOF READING INDIVIDUAL PAGES
	FORMATTING A PLAIN TEXT FILE

	16. MAKING EPUBS
	MAKING A MOBI FOR THE KINDLE STORE

	17. INTRODUCTION
	18. COPYRIGHTS, LICENSES AND FAIR USE
	COPYRIGHTS AND THE PUBLIC DOMAIN
	CANADIAN COPYRIGHT LAW
	CREATIVE COMMONS LICENSES
	FAIR USE

	19. DONATING E-BOOKS TO THE INTERNET ARCHIVE
	INDEX OF /17/ITEMS/BIGAVIATIONBOOKFORBOYS/
	EPUBS AND MOBIS
	EXAMPLES
	THE INTERNET ARCHIVE AND THE NOOK STORE

	20. DONATING TEXTS TO PROJECT GUTENBERG
	COPYRIGHT CLEARANCE
	DISTRIBUTED PROOFREADERS
	MAKING A WEB PAGE FROM A PLAIN TEXT FILE
	EXAMPLES

	21. CALIBRE
	CALIBRE2OPDS

	22. THE PATHAGAR BOOK SERVER
	23. GENCOLLECTIONINTERFACE (GCI)
	INTRODUCTION
	THE WEBSITE
	INSTALLATION
	ABOUT THE COLLECTION

	24. MAKING A BOOK SCANNER
	25. GETTING A RULE 6 COPYRIGHT CLEARANCE
	26. A BOOKI OF YOUR OWN
	REASONS FOR HAVING YOUR OWN BOOKI
	GETTING THE SOFTWARE
	DISABLE SELINUX
	CONFIGURE BOOKI AND OBJAVI 2
	SETTING UP APACHE VIRTUAL HOSTS
	USING OBJAVI 2

	27. ABOUT THE AUTHORS
	28. CREDITS
	AUTHORS
	GENERAL PUBLIC LICENSE

