
FONTFORGE

Published : 2013-01-31
License : None

1

BEFORE YOU BEGIN
1. INTRODUCTION
2. WHAT IS A FONT?
3. TRUSTING YOUR EYES
4. PLANNING YOUR PROJECT

2

1. INTRODUCTION

This book has been produced to help make the process of type
design available to anyone. Type design is visually complex as well as
highly technical. However it is easier to begin making type now than
ever. Partly this is because of free access to excellent tools such as
FontForge. It is certainly a fairly ideal platform in which to begin. That
said, FontForge is not just a beginner's tool. It is also highly capable and
is rapidly improving at the time this book is being written.

This book is partly meant to offer technical help and partly meant to
offer general insights into planning a type design project, and also
offers advice about how to make your workflow more efficient.

The authors of this book hope that you not only benefit from using it
but that you contribute to making better by giving feedback or even
by contributing content and fixes to future editions.

3

2. WHAT IS A FONT?

What makes typefaces different from handwritting, calligraphy,
lettering, and logos?

The single biggest issue that makes type design different is the need
for every glyph in the typeface to work with every other glyph. This
often means that the design and spacing of each part of the typeface
ends up being a series of careful compromises. These compomises
mean that we can best think about typeface design as the creation a
wonderful collection of letters but not as a collection of wonderful
letters. In other words we must think about the group and how it will
perform together and prioritize this over any question of what is
wonderful in a single letter.

This need to prioritize with the system rather than with any single part
also leads to a need to analyse our design process on the level of the
system. Characteristics which span letters become the things we want
to focus on particularly at the begin of the design process.

The other oddity in type design is that to very large extent the forms
we are designing are already significantly established. Our task as type
designers is not so much to create an utterly new form but rather to
create a new version of an existing form. This can perplex new type
designers. Finding the just right amount to change in order to excite
but not to alienate a reader is a tricky thing. Often designers get stuck
in letter-specific thinking. This mistake can be easily avoided if you
realize from the start that what is most meaningful in a typeface are
the parts of it that repeat the most. This typeface design is mostly
about designing the characteristics applied not just to the common
forms we all recognize but to the characteristics that occur the most
often.

It is also useful to recognize that these characteristics not only help to
create a font’s voice or atmosphere, but also determine what the font
will or will not be useful for, and they sometimes help detemine the
technological contexts for which a font is suitable.

It may seem intimidating or excessively abstract to think about the
design of a font in this way. However, getting used to these ideas is
the key to a faster, more effective, and satisfying type design process.

Let's begin by identifying the main systemic characteristics in type
design.

Construction

Construction refers to the underlying strokes that form a particular
glyph. The kind of construction you use is arguably one of the most
important questions to think about, because the construction implies
so much about the remaining choices, particularly if your design is
going to feel somewhat familiar to readers. In the example above, the
white line inside the letters indicate the approximate construction
suggested by the shape of the letters themselves.

Proportion of X-height to Cap-height

4

The letters on the left come from Playfair, which has a large x-height
relative to its cap-height. The letters on the right are from EB
Garamond, which has a smaller x-height. In the sample above, the size
of the H has been adjusted so that they match.

Ascender Height

In example above, the x-heights have been matched in order to
illustrate the relative difference in ascender heights.

Ascenders usually exceed the cap-height by at least a little, especiually
in text designs. In some cases, however, they can match or even be
lower than the cap-height. Longer ascenders can add elegance to the
look of a typeface. They often go with smaller x-height.

Descender depth

Like ascenders, descenders that are long can feel elegant. Long
ascenders and descenders can also be difficult to manage.

WIDTH

5

The width of a type design will alter not just how it feels but also what
it is useful for. The example on the right is from a text face. The
example on the left is from a display design meant to be eye catching.
Letters that are more narrow than the text face example are also
possible and can be used to save space or to fit more text in a smaller
space.

Width regularity versus variability

The letters in the top row of this example show a greater variety of
width than do the letters in the bottom row.

Weight

Slant

Contrast

Contrast refers to how much variation in stroke width is found within a
glyph. Notice in the below two O glyphs that the one on the left has
much greater variability in line thinkness between the top and sides of
the glyph. Both glyphs have some contrast, but the one on the left has
much more than the one on the right.

Angle of contrast

6

In the below image, we see that the thin parts of the lower case letter
o shapes are different. In the glyph on the left, the thin points lie on a
perfectly vertical axis. In the glyph on the right the axis is diagonal.

Weight distribution

If your font uses very little or even no contrast, this question is not
relevant. Most fonts, however, have at least some degree of contrast.
In these cases, you have a wide variety of options to choose from
when it comes to how to distribute the weight in your font.

Vertical

Vertical distribution of weight is very common. The 9 and 8 above are
a particularly intense example.

Horizontal

Horizontal weight distribution is much less common, but is nonetheless
seen in many fonts.

Bottom-heavy

7

Top-heavy

Irregular

Stems

It is easy to assume that your stems will simply be straight and that
there are no real questions to to worry about. But both the weight
and the shape of your stems are things you can and should make
deliberate choices about.

Joins

Bowls

8

Terminals

Speed

The n on the left seems to be written much faster than the one on the
right. Speed is discussed in more detail in the chapter on italics.

Regularity

9

The following characteristics are not present in all type designs,
however they are variables that may be a part of your design. If this is
the case, it is worth considering the degree to which they will play a
role as a variable.

Flourish

Notice that in the font on top the flourish is more present in the
capital letter and the second one the flourish is more in the lowercase.

Decoration

Dimension

10

3. TRUSTING YOUR EYES

Font design is the process of iteratively testing the individual choices
that collectively add up to a complete design. You will be testing your
font to see if the combination of decisions you have made:

allow you to read the font
make the font feel right to you
make the font useful for the the jobs you want the font to be
able to do

As you test the design, trust your eyes. Much of type design requires
that you make letters similar and that you repeat forms.

It is tempting to assume that if you measure the parts and the spaces
between the glyphs, then you will get reliable results. While very useful,
this approach has real limitations. You should expect to make
adjustments if something looks wrong to you. Furthermore, you should
feel confident that making changes until it "looks right" is the correct
thing to do.

The reason this is true is that there are a number of natural optical
illusions that all readers are subject to. These illusions must be
accounted for by altering the shapes of letters until they look right to
you.

EXAMPLES OF ILLUSIONS

Some illusions involve the perceived weight of lines, some involve the
perceived length of lines, and others involve the eye's perception of
shapes.

Horizontal versus vertical weight

The example on the left shows an H which is composed of bars which
are precisely equal in in thickness. This looks wrong. This example on
the right has a horizontal bar which has has been thinned to appear
equal in thickness.

Glyphs in which this illusion is relevant are numerous and include A, E, F,
L, H, f, t, and z.

Diagonal thickness

Similarly, if you have bars of the same width and one of them is set at
a diagonal, the diagonal bar will seem slightly heavier than the vertical
bar and slightly thinner than the horizontal. If you want it look right,
you will have to adjust it to be lighter like the horizontal example, but
just a little less.

Glyphs in which this illusion may be relevant are quite numerous but
include k, K, N, Q, R, v, V, w, W, x, X, y, Y, 7 , 2, &, ł, Ł, ø, Ø,√, ⁄, ‹, ›, «, »,
½,⅓,¼, ≤, ≥, and ×.

Length and perceived diagonal angle

Longer shapes need to slant less than short shapes in order to give
the appearance of same slant.

The image below has diagonal lines that are all at the same angle. The
long one appears to be at a different angle.

11

In this next example, the slant of the longer line has been adjusted:

Next, in this image of an actual italic, you can see this principle applied
to real type.

Crossing diagonals

When a bar crosses another diagonal or a straight line, if it isn't
adjusted then it will apear to be misaligned.

12

In the example above, the X on the left has two unadjusted bars
crossing each other. The example on the right has been adjusted so
that they appear to be aligned.

As you can see in this outline view, the X that appears visually aligned
involves an offset.

Glyphs in which this illusion is relevant include x, X, k, K, ×, # , and the
icelandic letter 'eth' (ð).

Perceived height

The shape of a glyph will contribute to how high it needs to be in
order to look as if it is the same height as the other glyphs. Round
glyphs need to overshoot the height of flat glyphs by a little bit.
Glyphs which have pointier shapes will need to overshoot more. The
sharper the shape, the more it will need to overshoot in order to look
correct.

In the image above, the top three shapes are unadjusted -- that is,
they have identical heights. The three shapes on the bottom have
been adjusted so that appear more similar in height.

This illusion is relevant for any glyphs that have parts which are either
round or pointy. Examples include O, Q, C, S, A, V, W, and so on.

YOU ARE FULLY QUALIFIED TO CORRECT
FOR THESE ILLUSIONS

Because you can see both the illusion and the effect of correcting for
the illusion, you will be able to make these corrections for yourself.
You just have to trust your eyes.

13

TEST FOR FITNESS OF PURPOSE

Just as you are able to see illusions and correct for them, you are also
able to see if a font is working for the specific use (or uses) you may
have in mind. You should also trust that you are able to see if the font
works well for these purposes.

Quite separately, it is worth noting that no font can be evaluated apart
from the way it is used and what it is used for. This is why it is
essential to begin testing from the very beginning of the design
process, and to continue testing until you feel the project is done.

What will these tests be like? The tests will be simple at first, allowing
you to test the first design choices. As your design becomes more
complete, your tests will need to keep pace and let you evaluate the
relative success or failure of the newest choices you have made -- or,
even better, to compare two (or three, or more ...) options you are
considering.

Sometimes you will find you have to double back and change a design
choice you thought was already working well. This is normal. Making a
font requires balancing many variables, and surprises often occur. The
more you design fonts, the less often you will be surprised but
surprises cannot be eliminated.

Near the end of the process, if the font will be used in a simple way,
the tests may also have stayed simple. However, if a font will be used
in many ways or in a wide range of printing or screen environments,
then it should be tested across that range of situations. Similarly, a
font that will be used in complex documents should be tested in
documents that simulate that use.

It can save you design time to have a well defined idea of the final use
you intend. However, this is not always possible and your ideas may
evolve. The key thing is to think about and define this use as
completely as you can, then to ensure that your tests keep pace with
the questions you are asking yourself in the design process.

14

4. PLANNING YOUR PROJECT

Now that you have a sense of the variables that a font can have, you
may want decide whether your project will have only one font, if it will
be a collection of more than one related fonts, if it will be a (now
traditional) four-style type family, or if it will be something even larger.

Common styles of type families include:

regular and a bold
regular, bold, italic, and a bold italic
thin, light, book, regular, semi bold, bold, extra bold, heavy, black
regular, condensed, bold and bold condensed
narrow regular, condensed, wide and extra wide
regular, semi flourished, flourished flourished very flourished,
extreme flourished

While there are reasons that typical pattens in families exist, you may
find you want a very different kind of grouping.

The scope of the project can be determined exclusively by your
ambition and your amount of free time. But project scopes are often
determined by the use you have for the collection or family of fonts,
or, still further, by the needs of your client. Certainly for professional
type designers, the latter two questions are usually the determining
factors.

GLYPH COVERAGE

A font is still a font even if it has only one glyph in it. But a font can
also have a few hundred or even thousands of glyphs. If your project
is self-initiated, then this choice is ultimately arbitrary. You may decide
you only want capitals, or that you want to include the glyphs found in
the other fonts you use. If you are doing work for a client, you may
want to clarify which language or languages the font is is meant to
support. Your goal could also be to extend an existing font, adding a
few glyphs to make it work in one or more additional languages.

Certainly it is a good idea to make this choice deliberately, and to err
on the side of including less rather than more. Often as a typeface is
being made, it can be tempting to include more and more glyphs. But it
is frequently more valuable to continue to improve the core set of
glyphs than to add new ones.

MULTI-STYLE FAMILY WORKFLOW

If you know from the start that you will have more than one font, you
will save yourself time if you plan and build the font family
systematically, and work on the styles somewhat in parallel, rather
than completing one style at a time.

It is of course impossible to create every style in a completely parallel
manner. But it is possible to complete a given design step for each
style in order to check and be sure about the relationships between
the styles, early in the process. You may find that it is useful to
complete one full set of test letters (such as "adhesion") for a regular
version, and then to make "adhesion"s for the other styles next.
However, you can also make the process even more granular and
make decisions about specific parts of the base letters (such as the 'n'
and 'o') for all styles together.

Depending on the size and composition of the family you are planning,
you may find that it saves time to make interpolatable instances of
glyphs, not only so you can interpolate intermediate styles, but to aid
making design choices about those typographic variables that shift
across the members of a family. For a refresher on the variables you
should be considering, see the chapter "What is a font? "

15

http://objavi.booki.cc/tmp/fontforge-en-2013.01.31-16.50.38.pdf_Qr_oi/planning-your-project/planning-your-project/what-is-a-font

GETTING TO KNOW
FONTFORGE
5. INSTALLING FONTFORGE
6. USING THE FONTFORGE DRAWING
TOOLS
7. DRAWING WITH SPIRO

16

5. INSTALLING FONTFORGE

FontForge is free and open source software. For you as the user, this
means two important things. First, it means that you can download
and install FontForge wherever you like, as many times as you like, and
use it with no restrictions.

Second, and ultimately more importantly, it means that the application
is written and maintained by a community of people whose only
responsibility is to the project itself. If you run into a problem using
FontForge, including those occasions when FontForge is missing a
feature you would like, you can bring your problem directly to the
programmers that maintain the application. Feel free to ask questions,
request new features, or ask why things work the way they do. As a
FontForge user, you are just as much a part of the community as
everyone else, and your participation will only make FontForge better
for everyone -- even if you are just getting started.

FontForge can be installed on Gnu/Linux (Linux), OSX, and Microsoft
Windows computers. Installer packages are provided for OSX,
Windows, and binaries for Linux. At the time of writing the Windows
and OSX binaries are somewhat dated. Hopefully a new release of
FontForge in early 2013 will bring updates to the binary packages
offered for all platforms.

The focus of this section is on installation of FontForge on a Linux
machine. As many of the developers of FontForge use Linux on a daily
basis, building from source can be simplest on that platform. The
easiest method to get FontForge on your Linux machine is to use your
Linux distribution's package repository. A slightly more difficult method
of installation is to download and install the binaries offered from the
FontForge website. You might like to use the binaries offered on the
FontForge website if they are more recent than those your Linux
distribution offers.

To round out the installation methods, we'll see how to grab the very
latest source code from github and compile and install it on your
machine. You might like to compile from the github sources if there are
some features or stability updates that you know are available or
perhaps there are fixes to problems that you have reported which are
not available in any release yet. This section also includes some
additional information on how to report crashes to the FontForge
mailing list so that you may help the software continue to improve for
all of it's users.

If at some stage you find reproducible stability issues with fontforge
you might like to install the debug information so that you can provide
a backtrace to the FontForge team so that the issue may be rectified.
If you have installed FontForge from your Linux distribution's package
repository the method to install debugging information is different
than the method to install debug information when building from
source. In either case, you can use the nm command to check if
debugging information is already available for your FontForge
installation. Use the "type" command to find the location of your
fontforge binary and if you see "no symbols" as shown below then you
will need to update your installation to include debug information in
order to provide good feedback to the FontForge developers.

$ type -all fontforge
fontforge is /usr/bin/fontforge
$ nm /usr/bin/fontforge
nm: /usr/bin/fontforge: no symbols

FROM YOUR LINUX DISTRIBUTION ON
FEDORA

To install FontForge on your Fedora Linux desktop machine run the
following yum command as the root user. This will require about 10Mb
of download to complete.

yum install fontforge

After issuing the yum install you should be able to run FontForge from
your menu or directly from the konsole or gnome-terminal by issuing
the fontforge command.

Use the command below if you also want to install the debugging
information for FontForge from the Fedora repository. Note that this
might require hundreds of megabytes of download if you do not
already have many of the dependent debuginfo packages installed.

debuginfo-install fontforge

DEBIAN / UBUNTU

sudo apt get install fontforge

sudo apt-get install python-fontforge

FROM SUPPLIED BINARIES

Clicking on the Download button on the main menu of the FontForge
website takes you to sourceforge.net. Under the fontforge-
executables directory you will find Windows, OSX, and Linux binaries.
For Linux you will see rpm files which can be installed.

FROM GITHUB

Github is a website which allows developers to quickly contribute to
the source code of a project. Users can also connect to the source
code from the github project to get the very latest code available for
a project. While many folks think that contributing to an open source
project requires you to have software development skills, you can also
make major contributions by reporting back errors in the software.

17

Part of this book discusses the use of spiro curves in font design. If
you do not wish to use that functionality you can skip the installation
of libsprio and carry on with the subsequent steps to install FontForge
itself from github.

Get libspiro from the download link on the spiro homepage
(http://libspiro.sourceforge.net). Installation follows the standard
procedure for an autotools buildable project as shown below:

$ tar xf libspiro_src-20071029.tar.bz2
$ cd ./libspiro-20071029/
$./configure
$ make
$ sudo make install

OK, so now you might have installed libspiro onto your machine and
are ready to install FontForge from it's sources on github. The github
download should be about 50Mb in size.

$ git clone https://github.com/fontforge/fontforge.git
$ cd ./fontforge
$./autogen.sh
Preparing the fontforge build system...please wait

Found GNU Autoconf version 2.68
Found GNU Automake version 1.11.6
Found GNU Libtool version 2.4

Automatically preparing build ... done

The fontforge build system is now prepared. To build here, run:
 ./configure
 make

$ make
$ sudo make install
$ sudo ldconfig

SOME COMMON ISSUES WHILE BUILDING

You might be tempted to use the --with-freetype-source configure
option. This option should only be needed if you are debugging
truetype font hints by stepping through them or other advanced
functionality.

If you have not compiled software on your Fedora machine, after
installing gcc, automake, autoconf and others then you might get an
error during the execution of autogen.sh with libtoolize. If that is the
case you might need to install the libtool-ltdl-devel package on Fedora
or a similar development package on another Linux distribution.

18

6. USING THE FONTFORGE

DRAWING TOOLS
Designing a font in FontForge will involve using a number of tools and
utilities, starting with the set of drawing tools that enable you to draw
your glyphs on screen. They may feel familiar to users with experience
in vector graphics, but there are enough differences that some
orientation is a good idea for all new users.

From the Font Window, double-click one of the glyph boxes to launch
the Glyph Window.

Note: The numbers along the top where the x and y axis intersect
indicate the current (x,y) location of your cursor on the canvas,
followed by the location of the most recently selected point. The third
number is the relative position of your cursor to the selected point.
The fourth number is the distance between your cursor and the
selected point. Fifth is the angle from the selected point to the cursor
(relative to the baseline). Next is the current magnification level,
followed by the name of the active layer.

Caution: Sometimes it seems like FontForge is not responding when
you are in the Glyph Window. What might be occurring is that there is
an open dialog box hidden behind the Glyph Window. You will then
have to move the Glyph Window to see the dialog, dismiss it, and
return to the Glyph Window.

FAMILIARIZE YOURSELF WITH THE
DRAWING TOOLS

Now that you know your way around the canvas, it is time to get
acquainted with the tools.

Point and zoom

Point and zoom behave similarly to the equivalent tools in any other
application. The pointer is the main selection tool, used to select
points, paths, and other objects on canvas. In addition to activating the
pointer tool in the toolbox, you can also momentarily switch to the
pointer tool while any other tool is active, simply by holding down the
Control key.

The zoom tool easily lets you zoom in, but it is a bit more difficult to
zoom out again. To zoom out, go to the View menu and select Zoom
out or Fit.

The freehand tool

The freehand tool allows you to sketch out irregular paths. Select the
freehand tool from the toolbox by clicking on this icon:

Move the freehand tool to the drawing area, hold your mouse button
down, and move your mouse around to draw. Switch back to the
pointer tool, and you can select points on the path you have drawn.

When you select one of the points on the path, it will turn into a yellow
circle. If the selected point is on a curve, it will display its control points
with a magenta handle and a cyan handle. You can grab either handle
and drag it around to change the shape of the curve.

The point tools

Next, try using the point tools.

19

To add a point to a path, first select any of these tools, then click on
the path and give it a little push. You will get a new point on the line.
The Curve point tool is used to add a point in a curved segment. The
HVCurve point tool constrains the new points that to add so that they
have either horizontal or vertical control points. This is important for
setting up extrema points. The Corner point tool allows you to make a
sharp bend in the path. The Tangent point tool allows you to
transition from a straight segment to a curved segment along the
path.

The pen tool

The pen tool allows you to add a point on the curve and drag out its
control points.

Spiro

Selecting the Spiro tool puts you into Spiro drawing mode. Spiro
drawing allows you to draw curves that reflow as you reposition the
nodes. Some people prefer this to the standard approach (known as
Bézier editing), but if you are used to Bézier editing you might find it
does some unexpected things.

Knife

The knife tool allows you to cut splines in two. This comes in handy if
you have drawn a shape, but only need part of it.

Ruler

The ruler tool gives you measurement and coordinate information.
When you use it, it displays a floating "tool tip" next to the cursor. If
you hover your cursor over a point, the tool tip gives you even more
detailed measurement and coordinate information. If you bring it next
to a spline, it gives you information about the curvature and radius.
Most usefully, if you click and drag the ruler tool, you will see the
distance you have dragged the cursor, plus every intersection that you
have stretched across.

The transform tools

There are six transform tools:

Note: For all of the T ransform tools, if you double-click on the tool,
you can enter numeric values.

The scale tool lets you freehand rescale an object. Holding down the
Shift key allows you to scale an object while constraining it to the
proportional ratio.

The rotate tool lets you free-rotate an object. It rotates the selected
object around the position where you initially click the mouse.

The 3D rotate tool lets you rotate an object in the third dimension,
and projects the result on the x-y plane.

The flip tool allows you to flip a selection either horizontally or
vertically. The point at which you click the mouse is the point of origin
of the transformation.

Note: After flipping a point you will probably want to apply Element >
Correct Direction.

The skew tool lets you horizontally skew the selection either clockwise
or counterclockwise (withershins is how the dialog refers to
counterclockwise).

The perspective tool gives you another way to distort a shape in a
nonlinear way.

Note: There is no numerical option for the perspective
transformation.

The rectangle/ellipse and polygon/star tools

These tools allow you to draw primitive geometric shapes, which is
faster than constructing those shapes out of separate line segments.

20

Clicking the chevron area on these tools will give you the option to
switch to the alternate tool. If you double-click on either of the tools,
you can open the shape type's options.

Rectangle options: corner style and bounding box (corner or center
out).

Ellipse options: Bounding box or center out.

Polygon options: Number of vertices.

Star options: Number of star points and depth of points by
percentage. The higher the percentage setting, the longer the arms of
the star.

Mse1 and Mse2

Caution: This area of the toolbox seems to be broken in the most
recent version of FontForge -- you may get a crash if you click in here.

Layers

The FontForge canvas has three layers by default: the Guide layer, the
Background layer, and the Foreground layer. Guide layers are used to
insert guides (such as x-height or cap-height guides). Foreground layers
and background layers are both used for drawing, but only the
topmost foreground layer will be rendered into your final font.

The eye icon indicates whether each layer is visible, and you can click
to toggle the eye to make a layer invisible. The C (or Q) indicates
whether you're using Bézier or Quadratic curves.

The # , B, or F refers to whether the type of each layer is a Guide
layer, Background layer, or Foreground layer, which is significant if you
add more layers of your own. You can create and delete additional
layers using the plus (+) or minus (-) buttons in this section of the
toolbar. Layer type and curve type can also be controlled by right-
clicking (once you have additional layers).

BASIC DRAWING

Next you should walk through some of the basic drawing workflows
you will use over and over.

Correct Direction

21

1. Start by using the Rectangle tool to draw a rectangle within the
drawing area of the Glyph window.

2. Next, use the Ellipse tool to draw an ellipse within the rectangle
you just drew.

3. Go to the Element menu and choose Correct Direction. You will
see that the two shapes merged, and that you essentially
punched a hole in the center of the rectangle.

Remove Overlap

22

1. Add a star that overlaps the corner of the rectangle.

2. Select the star and the earlier shape. You only need to select one
point of each overlapping shape, but it is okay to select extra
points.

3. Go to Element > Overlap > Remove overlap. You will see that
your two shapes have become one.

Add a Point

Using the pen tool, click and hold in the middle of a line segment.
Keeping the mouse button clicked, drag the mouse to change the
shape.

Tangent points

23

next step: extending control points.

To do so, choose Element > Get Info, which opens the Point Info
Window. From the Location tab in that window, go to the Next CP field
set and set the Distance to a large number such as 75. Click OK. You
will see that the curve now smoothly enters the straight line.

Transformation

Now select about a quarter of the shape -- the star and part of the
ellipse in the middle.

Choose the 3D Rotate tool, mouse to the middle of the selected area,
and slowly click and drag until you see something you like, then release.
Here is an example of 3D Rotate used on the practice image:

Set stroke shape and width

24

So far you have used the Freehand drawing tool to draw a line. If you
double-click the Freehand tool, you get the Freehand dialog shown
here, which contains a drawing window. This is where you select pen
shape and size. This dialog also appears when you choose the Expand
Stroke option in the Element menu.

Using the corner tool, draw a polygon and click ok.

Now draw a line with the Freehand drawing tool. When you release the
mouse button, the new path is automatically stroked with the shape
you chose in the Freehand dialog, as shown here.

KEEP DRAWING

You should continue to experiment with the drawing tools until you
feel comfortable that you can use them to draw and transform
whatever shapes you need. At this point, you are equipped to start
constructing the components of glyphs, but you should also take time
to look at FontForge's other set of tools, Spiro drawing mode. Spiro
drawing is distinct enough from Bézier curve editing that it requires an
explanation of its own.

25

7. DRAWING WITH SPIRO

Spiro is a toolkit for designing curves in an alternate method to the
more traditional Bézier curves. Although it is optional, FontForge can
be installed to include a Spiro mode that offers you tools to create
these specific types of curves. See the chapter of Installing FontForge
for more detail on how to install Spiro tool support.

Spiro drawing is different, but it can create curves in a way that Bézier
tools cannot, and it can solve problems that other drawing methods
cannot. Spiro can be a very cool tool to use. Please experiment!

The Spiro toolset

Many of the same drawing tools are available in Spiro mode as those
described in the "Using the FontForge drawing tools" chapter, but
some of them work very differently when you are in Spiro mode.

There are five different types of Spiro points:

1. G4 points, used for a more gentle curve
2. G2 points, used for a sharper curve
3. Corner points, for abrupt corner joints
4. Previous constraint points, used when the countour of the path

changes from a curve to a straight line
5. Next constraint points, used when the path changes from a

straight line to a curve

Draw an S with Spiro

Going through the exercise of drawing an 'S' with Spiro will make you
comfortable with Spiro.

Tip: When drawing in Spiro mode, always start with a G4 or G2 point.
Beginning with the other types of points doesn't really work in
FontForge.

Start off with a G4 point at the topmost point of your 'S,' followed by
a corner point, then another corner point. Work clockwise around the
shape of the letter.

Follow this with a G4, a previous constraint point, and a next constraint
point.

26

http://objavi.booki.cc/tmp/fontforge-en-2013.01.31-16.50.38.pdf_Qr_oi/drawing-with-spiro/drawing-with-spiro/how-to-draw

Next, add another G4 point, followed by two more corner points.

Then a G4, followed by a previous constraint, followed by a next
constraint.

27

Then, add one more G4 point, and, finally, close the shape at the
starting point by clicking on it using the G4 point tool.

Now you almost have an 'S'! Begin nudging the points around to get
your S to look the way you like it.

Oops, what happened?

Don't worry -- Spiro sometimes does some funny things. Just hit Undo,
or keep nudging the points to get things back on track.

Now you should see something like this:

Toggle out of Spiro mode back into Bézier mode. You will notice there
are a lot of points on the resulting curve - you -may want to clean
some of them up.

28

To clean up those extra points, go to the Element menu and select
Simplify > Simplify. Then go to Element > Add Extrema. Finally, go to
Element > Round > To Int. After these clean up operations, you will see
something like this:

You can continue to experiment with Spiro mode to get a feel for how
it differs from Bézier drawing. The terminology is different, but as is
the case with FontForge's other drawing and adjustment tools, practice
makes perfect.

29

WORKFLOW
8. CREATING 'O' AND 'N'
9. WORD SPACE
10. CREATING YOUR TYPE'S DNA
11. CAPITAL LETTERS
12. LINE SPACING
13. PUNCTUATION AND SYMBOLS
14. COMPLETING THE LOWER CASE
15. NUMERALS
16. BOLD
17. ITALIC
18. SPACING, METRICS, AND KERNING
19. MAKING SURE YOUR FONT WORKS:
VALIDATION
20. THE FINAL OUTPUT: GENERATING
FONT FILES

30

8. CREATING 'O' AND 'N'

There are many approaches to designing a font. It can be helpful to
deconstruct the larger processes involved in order to get started
quickly, and to provide a solid basis for a whole font's worth of
characters. A popular and valuable approach to this is to design the 'o'
and 'n' characters first, nailing down essential elements of form, space
and balance, before bringing them together for the formation of other
characters. Creating the lowercase 'o' and 'n' characters can provide us
with some of the fundamental forms and structures that will underpin
all other characters that are needed.

Although the design of the 'o' may seem like quite a simple thing, all
the characteristics mentioned in the "What is a font? " chapter come
into play. The choice you make about each characteristic should be a
deliberate choice.

UNDERHANGS AND OVERSHOOTS

One way that optical effects impact type design is in the way that
curves and straight edges appear to our eyes. For example, for a
curve and a straight edge to look as though they are sitting correctly
along a line, the curve must actually sit a little below the line. This is
portion of a character that dips just below the baseline in order to
appear sitting on the baseline is called the underhang, an example is
seen below. Without underhang, characters with curves at the baseline
will appear to not be sitting correctly within a line of text.

In the same way as the effect of the underhang has optical impact in a
font design, an area of overshoot is needed to provide the illusion of
alignment at the x-height and at the cap-height (see below).

DESIGN THE LOWERCASE 'O'

The design of the 'o' is not just a question of the black part of the
letter. While the 'o' provides the very basic bowl weight and shape, the
white, or counter, provides the size and shape used by the rest of the
font. In general terms, we can also observe that the round form of the
'o' will be echoed in other characters. These include the b, c, d, e, p,
and q, and the form will also implicate the shaping and forms of curves
within any other characters of the font, such as the O, C, D, and Q.

In addition, the white inside the 'o' should be utilized when designing
the spacing of our font; the 'o' sets up the reference rhythm of spaces
used between all other glyphs in the font too. These two values are
very related, so essentially you will need to design the amount of white
space that are the side bearings of your 'o' as well. As a general
principle, with the exception of slanted or italic fonts, the 'o' should
have the same amount of space on the left and right sides, and the
white space between a string of 'o' characters should balance the white
space inside the 'o's.

Here we encroach well into the territory of spacing and metrics, so
even at this early stage you will need to study some of what is written
in the chapter on Spacing, Metrics, and Kerning, which covers the whys
and hows of designing spacing in a font. Then, returning back here,
you will have a well spaced 'o' character to help you design your 'n'
character.

DESIGN THE LOWERCASE 'N'

31

http://objavi.booki.cc/tmp/fontforge-en-2013.01.31-16.50.38.pdf_Qr_oi/creating-o-and-n/creating-o-and-n/what-is-a-font
http://objavi.booki.cc/tmp/fontforge-en-2013.01.31-16.50.38.pdf_Qr_oi/creating-o-and-n/creating-o-and-n/spacing-and-metrics

Once you are happy with the form and spacing of a string of your
lowercase 'o' character, the next step of this approach is to create a
suitably shaped, balanced, and well-spaced lowercase 'n,' then to inject
it into your string of 'o' characters.

If we look at the anatomy of an 'n', we can break it apart into two or
three components consisting of stem and curve. This approach can
give us a shortcut to keeping balance and harmony within our
characters as they are formed, and as our set of characters grows.
Look at the example lowercase 'n' below; it is broken into two
components. These separate components combine together to form
an 'n', but the same components will be re-used later when forming
other characters, e.g., the stem at the left of the 'n' can be used to
form the left-sided stem of all other lowercase characters.

Taking yourself forward again to the chapter on spacing and metrics,
the design of the 'n' character should keep pace within the process of
spacing the 'n' and 'o' characters together.

Now, garnering the methods you have used to create an 'n' and 'o'
character, you are ready to expand the lowercase character set. The
qualities of the stem and curve components of the 'n' and 'o' will
inform the way you may form other characters. If we study the
characters below from Open Sans, we can see the relationships
between the formal aspects of separate characters and how they can
be repeated, with some adjustments, to form the components of our
font.

32

9. WORD SPACE

It may sound funny to pay special attention to the word space.
However it is one of the most commonly used parts of a type design.
A word space that is too wide or too narrow can ruin the design of a
font. It is not too soon to begin considering the words space as soon
as you have the "n" and "o". The choice you make at this point should
be returned to and potentially adjusted at each major section of the
design process.

Above top is an example if a word space that is much too tight, and
below that the word space is too wide.

Above is an example of a word space that is well balanced.

If your type is meant to be used at large sizes then the word space
can be smaller. If the font is meant to be used at very small sizes you
should make the width a wider than normal.

Research shows that a word space that is too big is more tollerable
than one which is too small so If you are unsure you may want to err
in that direction. Similarly well run scientific studies have shown that
younger children in particular benefit a little from larger word spaces
than would be seen as typographically normal for adult readers.

Linda Reynolds and Sue Walker (2004) 'You can't see what the words
say': word spacing and letter spacing in children's reading books',
Journal of Research in Reading, vol 27 , no.1, pp. 87-98

33

10. CREATING YOUR TYPE'S

DNA
After you have completed good solid design and spacing of the 'o' and
'n', the next thing to do is to begin populating the font with letters
whose structural characteristics provide useful DNA for making many
of the other letters in the font.

It may be tempting to rush to populate your font as rapidly as
possible with all the letters. You should resist this urge! The reason is
that while 'n' and 'o' provide an excellent beginning to the foundation
of the design, we need to establish the rest of it. Rapid expansion
before this is done will mean that the whole project is harder to
manage -- and takes longer than it needs to.

What else do we need for the foundation of our design? First, let us
look at what we have with our 'n' and 'o.'

Although the 'o' is especially useful for working out the basic spacing, it
is not going to help us design other characters; not necessarily even
the 'b' or 'd'.

The letter 'n', on the other hand, is very useful because it helps making
the m, h, and u. The other factor that we need to concern ourselves
with in choosing letters for our foundation is how frequently the letter
is used. A letter that is used a lot will help us make test words. Some
of the letters may be chosen almost exclusively for this second
reason.

The letters you choose don't have to be the same ones we suggest.
They should simply have the characteristics being discussed. So, for
instance, you may want to use "a d h e s i o n" to start with. This set
of letters is used in the type design MA course at the University of
Reading. But an alternative you may want to use is "v i d e o s p a n."
The foundry Type Together uses this set themselves ,and when they
teach type design. Either set has enough DNA to be meaningful, and it
is relatively small so it is very manageable.

While it may be easiest to simply use one of the above sets of letters,
you can also build your own.

If you do the latter, what set of letters should you pick to add to "n"
and "o"? Consider the following.

a - The letter 'a' is also a very common. The 'a' may also be useful
in anticipating what the terminals of s may be like.

d - The shape of 'd' can let you know quite a lot about the design of
b, p and q.

e - In English and many other languages, the letter 'e' is especially
common -- which makes it especially valuable. The shape of 'e' can
also be used to begin the design of 'c.'

h - While 'h' can be built fairly rapidly from the 'n,' it also provides
variety to the texture you want to test by offering an ascender.

i - Like 'e' the letter 'i' is also fairly common, and it has the benefit of
letting you know a little bit about what 'j' is like. The shape of 'i' is also
partly inferable from the shape of 'n.'

s - The letter 's' is a good one to add early on because it adds visual
variety to the texture of letters you will be testing. The letter 's' is also
unusually hard to get right, so starting on it early makes it more likely
that you will be able to spend enough time to get it right by the end
of the project. The terminals of 's' may sometimes be useful for
anticipating what the terminals of a, c, f, j and y could be like.

v - The letter 'v' is useful for anticipating what the 'y' and 'w' may be
like.

One you have these letters, it will be useful to spend time refining
them by testing words that are made from them. As before with the
'n' and 'o' a great deal of attention should be paid to the spacing of
the letters and the relationships of the counters to these spaces.

BUILD A TEST TEXT

There are many resources for rapidly building your test text;

There is a Libre software solution provided by Dave Crossland at
http://libretext.org

"Adhesion Text" was the first resource of this kind. It was made by
Miguel Sousa: http://www.adhesiontext.com/

The foundry "Just Another Type Foundry" also offers an excellent
resource: http://justanotherfoundry.com/generator

34

http://libretext.org/
http://www.adhesiontext.com/
http://justanotherfoundry.com/generator

11. CAPITAL LETTERS

Making the capital letters should follow a pattern very similar to the
making of the lower case letters. You begin by designing key letters
whose shapes and characteristics lend themselves to the design of
chararacters which share a common shape. Just like with lower case
letters the frequency with which letters are used also remain an
important factor in the choice of the letters.

The first two letters to design are "H" and "O". The design these
letters should not just be in relation to each other but should also
relate to the existing lower case letters.

It is at this stage that you determining the proportion of the lower
case to the upper case. You may want to adjust the ascenders and
descenders of your lower case or adjust your capitals to the lower
case to create the proportin that suit the purpose of your design.

The weight of strokes in the upper case often needs to be somewhat
heavier than the strokes of the lower case. You may want to create an
interpolation experiment to rapidly find how much heavier they should
be.

The next set of letters to consider adding are A E S I N and either P or
D and maybe V.

Depending on the style of the font you are making you may find that
the capital letters require more variation in width than you have in the
lower case letters. The width of the E S and P may be substantially
narrower than the H or may be similar.

Generally the N and V are usually similar to H but a slightly wider.

The D may be similar to H or quite a bit wider.

35

The shape of O can tell you quite a lot about the C, G and Q. The
shape of H tells you a bit about about I and J and the left side of B D E
F K L P R.

It also tells you a little about T and U. The shape of A can tell you
quite a lot about the shape of V.

The shape and proportions of V tells you a little about how to design
Y W X. The shape of the Z is distinctive.

36

37

12. LINE SPACING

When you have the word space and the n and o set you can begin to
look at the line spacing. However, a full and final decision about line
spacing isn't possible until you have Capital letters and some
punctuation.

THINK ABOUT LINE SPACE
INTENTIONALLY

As is the case with letter and word spacing, having too much or too
little line spacing can make your font look awkard in real-world usage.
Above all else, finding the right line spacing balance is a matter of
thinking about the question intentionally and of testing a range of
options on the way to making a final decision.

As a general rule, most new font designers tend to err on the side of
having too little line spacing in their font, so if you are unsure, adding
additional space is usually a good idea.

You should also consider the scope of your project's language
coverage when considering line spacing. If you test your font's line
spacing only with unaccented characters, you are likely to settle on a
line spacing value that leaves no room for accents. If you are certain
your font will never be used with accented characters, this might be
acceptable -- but the odds are that your font will be used to set
accented text. In that case, too little line spacing will cause the accents
on one line to run into the bottoms of the glyphs above, and leave the
reader with difficult (if not impossible) to read text.

One strategy to test whether your font's line spacing is proper for
accented characters is to employ sample text from several languages.

For languages heavy in diacritical marks (such as Czech), line spacing
should be taller than for languages that use no diacriticals. The
examples above show Czech (above) and English with the same fairly
wide line spacing.

EXPERIMENT WITH YOUR FONT'S LINE
SPACING IN FONTFORGE

In FontForge, you can set and adjust our font project's line spacing
from within the Font Info window. Open this window by choosing Font
Info from the "Element" menu, then click on the General tab. Note the
values that FontForge has listed for Ascent and Descent. Unless you
have made manual changes already, these two numbers when added
together should equal the value of Em Size listed on the line below.

Now switch to the "OS/2" tab. On almost all computers, your font's line
spacing will be determined by the Ascent and Descent values that you
enter in this tab, under the Metrics heading.

38

There are three sets of values: Win Ascent and Descent, Typo Ascent
and Descent, and HHead Ascent and Descent. You should set all the
Ascents to be the same as the Ascent value you noted in the General
tab. Next, you shold set all of the Descents to be the same as the
Descent value you noted in the General tab, with one important
exception: you must make the Typo Descent number negative. Leave
the value the same, but put a minus sign in front of it. Finally, uncheck
all of the "is offset" options.

These settings will give you a sensible starting point. You can now
proceed to test your font with this line spacing and make incremental
adjustments until you arrive at eye-pleasing result.

If you find your linespacing is too tight and you don't want to or can't
make the verical metrics larger you can scale the glyphs down to gain
more space for linespacing.

39

13. PUNCTUATION AND

SYMBOLS
Punctuation and other typographics symbols have a history of their
own, separate and apart from the development of the alphabet. But
you will find that the same design process still applies, including reusing
and adapting component elements, and iteratively testing your design
choices.

SIMPLE PUNCTUATION GLYPHS

The first thing to do when designing punctuation is to create the '.'
character, which is known as the full stop or period.

The shape of this glyph is often taken from the dot over the 'i,' which
is sometimes called the tittle. After you copy the dot, you may want
to make it a little larger. Testing several different sizes in printed text
or on screen is advisable.

Once you establish a size that you are happy with, this dot can be
used as the basis for a wide variety of other punctation, including
these glyphs: ; : ? ! ¡ ¿ · …

The next glyph to make is the comma. The shape of the comma can
vary to an almost suprising degree. It may be valuable for you to look
at a wide rage of comma designs before you design yours.

The image below shows two of the most common forms that the
comma may take.

The top of the comma is often slightly lighter than the period, because
if it is the same it can look too heavy. In the sample image, the comma
on the right is a good example of this compensation being applied.
Another common mistake to watch out for with this glyph is making it
too short

When you have your comma it will be fairly easy to make the semi
colon (;).

EXCLAMATION MARK AND QUESTION
MARK

The exclamation mark can be be deciving in that it seems simple to
make. If you look at a range of typefaces you will see that sometimes
the design is indeed fairly simple.

However, this is a glyph which has a surprising amount of opportunity
for expressing design. It often the case that even in a font which has
very little contrast, the bar above the dot is somewhat heavier at the
top than the bottom. The form of the exclamation mark usually
relates to the design of the comma to some degree.

40

The question mark can also be quite difficult to make, because it
requires you to balance an open curve over the dot below.

As with the exclamation mark it is advisable to look at and even test a
range of different solutions before choosing one for your design.

The design of the c, C, G, s, and S glyphs may provide some basis for
the design of this glyph, but you may decide to choose a form that is
distinct as well.

ADDITIONAL SYMBOLS

Simple or vertical quotes -- ' and " -- are distinct from typographic
quotes: ‘ ’ and “ ” ‚ „ .

Simple quotes can follow the shape of the bar over the dot in
the exclamation mark, but they can also be designed separately.

Usually typographic quotes are fairly closely related to the comma,
however they should be longer than the comma and often curve more.

41

Brackets [] are relatively simple to make because they are so boxy in
shape. Neverthess their design should reflect the choices you have
made in the rest of the typeface.

The main question to decide is how tall and deep they will be. The
convention is that they should exceed the height of the capitals very
slightly and descend below the baseline to approximately 3/4 of the
depth of your lower case descenders.

These choices will also be reflected in the design of the parentheses ()
and the braces {}. The weight of the stems on all three of these
symbols should be less than the weight of the stems of both the
capitals and the lower case letters.

Parentheses should draw on the design of related shapes, such as D, C,
and G.

Braces are notable in that their design varies to a greater degree.
Braces have this in common with the question mark. The distribution
of weight in braces may be like weight distribution of the numbers, in
that it may sometimes violate the rules you follow in the rest of the
design.

42

14. COMPLETING THE LOWER

CASE
You may have noticed in fonts you've seen before that, while each
letter has its own shape, they all relate to each other. By carefully de-
constructing a few glyphs, you gain the building blocks of nearly all the
others.

Note the similarity between the upper terminals on this c and f:

Their shapes indicate that they belong in the same group, even though
they are subtly different. The terminals are one of the identifying
traits of a font, and generally are repeated on many of the letter
forms.

However, excessive dependence on modularity shows its own marks in
a design, and therefore should be avoided -- unless that is a look you
want.

PROCEEDING WITH THE OTHER LOWER
CASE LETTERS

You already made your letter 'n.' From this, you can easily derive the
m, h, and u by cloning, stretching, and rotating, respectively. There are
subtle changes in the spacing of the stems in the m and the u. The 'u'
has changed not only its spacing but its serifs. This doesn't happen
automatically; it's up to you to get in there and push the points
around.

The 'i' can be derived from the stem of the 'n.' The l'' can be made
from the stem of the 'n' with some adjustments.

Making the d From the Stem of h and o

Open the letter 'd''s glyph window by double-clicking below the 'd' in
the font view. From the font view, copy the 'o' and paste it into the
letter 'd''s glyph window. Then do the same for the 'h'. At this point
you can delete the part of the h that you're not going to use. Position
the remaining pieces together so they resemble a 'd.'

43

Clearly, there's more work to be done here. We'll make some
adjustments. Narrow the right side of the o where it meets the stem.

To improve the optical spacing and allow the shape to look more
balanced, make a little room at the serif by adding a point to the stem
and pushing the bottom points to the right.

Below is an overlay of the starting shape and the new shape.

Now that you know how to assemble from existing parts, you can
make other similar letters. Keep in mind the subtleties that make each
letter individual, yet still part of a family.

Deriving the b, p, and q

Now that you have the d, by flipping and rotating you can make a
reasonable b, p, and q. Again, be aware of how the serifs and the
contrast differ in each letter. Your font doesn't have to do this exactly
the same way, but it's one of the things you should think about.

44

Make the g

You can start with the q, stretching and altering the tail, to make the
single bowl g. No shapes closely resemble the binocular g. The
binocular g usually needs to be noticbly lighter in oreder to look right
when set with other letters.

On to f and t

The t has an ascender, but it's generally shorter than the ascenders of
the other lower case letters. By comparison, the f is much taller and
usually encroaches on the space of the letter next to it. They both
have crossbars which are generally at the same height, width, and
thickness. Often you can copy from one to the other.

Now make the e

The e will be loosely based on the o. The crossbar of the e is lower
than that of the t, but has the same thickness. The hook at the
bottom of the e will be informed by the bottom of the t.

From the e comes c

Creating the c from the e involves deleting the crossbar and adding
the terminal at the top. The upper terminal of the c can be similar to
the upper terminals of other letters such as the a, and f, and r. The
terminals of the c can also form the basis for the s. The e can also
influence the proportions of your a.

45

v, w, x, y, and z

These letters are somewhat difficult because they don't have forms
that are related to the other letters. This means you have to just jump
in and draw the v. Make the down-stroke as thick as your thick stems,
and make the upstroke as thin as the thinner strokes in your other
letters. Once you have the v, you have a basic plan for the w and y.
For x and y, focus on matching the contrast of the rest of the design
while compensating for the illusions that occur in diagonal and crossing
diagonal forms.

46

15. NUMERALS

Numerals are often difficult for font designers -- and for several
reasons. One is that numerals have a very large number of curves.
Another is that numerals often use conventions in their shapes that
are different from (or are even in violation of) the visual conventions
seen in the rest of the font design. Furthermore, numerals can have
very large number of stokes (like 8 and 5 do), or they may have large
white spaces (like 1, 7 , and sometimes 2 and 4). Both situations can be
hard to manage. Finally, there is the problem of how to make sure
your zero looks different from the capital O.

It can be useful to look at the numerals found in a wide variety of
fonts to become more familiar with the ways in which designers cope
with these problems.

In those numerals with a dense number of strokes (such as 8), you may
find that designers allow the stroke widths to become a little thinner
than is typical of the letters in the font. A similar approach can be seen
the design of the double story g.

Conversely, to compensate for numerals with large white space
proportions, some strokes are likely to become heavier than would be
typical.

In the case of distinguishing the zero from the capital O, there are a
wide range of solutions -- such as making the zero narrower than the
O, or a zero that is perfectly round, or perhaps (especially in a
monospace font) having a slash through the zero.

Having the zero narrower than the capital O while sharing its height is
the common approach. This approach is typical of lining numerals.
Lining numerals are the most common style for numerals. Examples of
fonts that use this approach include: many Garamonds, Futura, and the
Google web font Open Sans. Below is Open Sans showing the zero,
capital O, zero and then other numerals.

A perfectly round or nearly perfectly round circle is less common, but
does exist. Examples of fonts that use this approach include the
Google web font Volkhorn as well as other commercial types such as
Mrs Eaves, Vendeta and Fleischman BT Pro. Fonts that use oldstyle
proportional numerals are more likely to feature this aproach.
Sometimes a zero at x-height but which is narrower will also be seen.

Numerals also come in up to 11 identfiable styles when you include
fractions, superscripts and subscripts. We will look at the 5 most
common ones.

LINING STYLE NUMERALS

The most common styles of number found in fonts are Tabular Lining
and Proportional Lining. Lining refers to the heights that the numbers
use. If it is a lining style the heights for all the numbers will be optically
the same. The difference between Tabular Lining and Proportional
Lining numbers is that in Tabular Lining all the numbers also share the
same widths. This style is useful for speadsheets and any other
purpose where it is helpful for numbers to stay stacked up in neat
lines both horizontally an vertically.

Proportional lining numbers have the advantage of having the ability to
looking more visually even because the forms and spacing of the
numbers can vary to compensate for differing stroke density.

47

RANGING OR OLD STYLE NUMERALS

Tabular numbers are a relatively new invention In historical terms.
Before they existed there were old style proportional numbers. Old
style numbers are useful if you want the numbers to mix in and share
the style of a text.

Tabular oldstyle numbers are fairly rare. They can be useful in an
anual report where you want the feeling of an old style number but
the tabular spacing typical of that kind of document. The image above
is from a typewriter Library catalog card.

HYBRID STYLE NUMERALS

Hybrid numerals don't share the font's cap-height or x-height, but
instead occupy their own height. The term "hybrid" refers to a mixing
of the old-style and lining numerals. Examples of fonts that use hybrid
style numerals include Georgia and the Google web fonts Merriweather
and Donegal. The zero, capital O, zero, 1, 2, 3, etc glyphs from
Merriweather are shown below.

48

16. BOLD

When we talk about the style "bold," we are really talking about a
broader variable, which is weight. Weight can include anything from
very very thin hairline letters to enormously heavy letters. This
variable is used in text typography to create strong separation
between bodies of text, and it is used in graphic design either to draw
attention to a word or short texts, or to give text a specific feeling
(rather than to contrast it with other text).

While you may want to do a wide range of things with weight it is likely
that your first experience with adjusting weight will be to try to create
a bold to accompany your regular text weight.

Because you are using FontForge you have a distinct advantage. Unlike
many font editing programs, the results you get from FontForge style
filter may actually be suitable for use -- moreso than the ones you
would get in commercial type design software. This is because the
algorithm it uses is exceptionally sophisticated.

Creating a bold version of a font can be rapidly approximated by
running a filter called Change weight (which you will find in he Element >
Styles menu) to add weight to your glyphs.

The automatic nature and relatively high speed of this process makes
it ideal for testing what weight you may want for your bold. You may
want to try running this filter several times and save several versions
to compare in text next to your regular. That said, you may still need
to either alter the result further after running the filter, or manually
adjust individual glyphs in order to get a result which is satisfactory.

It is also worth remembering that glyphs which do not have a density
of strokes (such as 1, i, l, I, L, j and J) may need to be heavier, while
glyphs which do have a density of strokes (such as a, e, g, x, B, R, 8,
and &) will need to be less heavy than the other glyphs.

FONT INTERPOLATION

FontForge does have a function to interpolate between separate fonts
(see the the Interpolate Fonts function from the Element menu). Font
interpolation is a technique that can be used for creating intermediate
weights from two other weights. Therefore one way of deciding about
the weight of your bold is to create a bold which is definitely heavier
than you need, then to interpolate several different weights between
this overly bold design and your regular.

Using this technique you can more rapidly find the weight you feel is
most appropriate for your project. The same technique can be applied
to help decide about even heavier weights such as the "heavy" and
"black," as well as lighter ones like "book" and "thin" styles.

By this logic, it may seem like the best and most efficient way of
making a regular weight and all the other weights you may need, would
be to make a very thin and a hyper-bold font, then generate
everything you need from these. However, the result of that approach
is likely to be excessively bland. Instead, it is often the case that each
significant change in weight will require its own master design from
which other middle weights can be made.

49

17. ITALIC

Italics are probably the most misunderstood style in type design, but
they are also the style with the greatest potential excitement and fun
due to the large number of variables for you the designer to play with.

Italics are different from bolds in that they are not meant to appear
to have a different weight than the regular. Instead, they are meant to
offer a different texture than the regular. Greater intensity in this
difference will mean that the italic is especially useful for creating a
sense of contrast with the regular. This stronger effect is useful for
highlighting single words or short passages of text. In contrast, a less-
different texture is often useful in situations where you are setting
multiple lines, whole paragraphs, or even even pages in an italic.

SLANT

The variable most commonly associated with italics is slant. Indeed,
when a web browser is asked for an italic in a CSS rule and there is no
Italic, it will simply slant the regular to create a synthetic or faux italic.
It is probably not surprising that when people first begin designing
type they also consider this approach. The origins of this idea go back
to the mid-20th Century and modernism as it was applied to design.
This is why the first italics seen in typefaces such as Helvetica were
also slanted versions of the regular.

How much slant?

Some italics have no slant. No, really! These italics are called upright
italics. However it is likely that if your design has only one italic in it
that you will choose for that italic to have some degree of slant. In
general, italics tend to slant between 4-14 degrees. Most contemporary
fonts slant between 6-9 degrees.

While slant can be important to the design of an italic, is easy to
notice, and can even be done with some limited success using an
automatic filter, it is not the only variable that you can use to help
separate your italic from your regular. You may want to consider using
one or more of the following variables in addition to slant.

ITALIC CONSTRUCTION

The term "italic" does not in fact refer to the slant seen in in many
italics designs but instead refers instead to a style of writing which
became popular in 14th century Italy. This style of writing was a faster
and a connected form of writing which uses a different construction
for its letters than is seen in regular. This different construction or
pattern of strokes is what type designers are referring to when they
say they have designed a "real" or "true" italic. This construction has
many sub characteristics that you may choose to include in an italic
design.

Triangular counters

The most obvious of these characteristics is the triangular
countershape created by letters with joins. These letters include a, b, d,
g, h, m, n, p, q, and u. This variable is powerful, partly because
countershape is a powerful variable, but also because of the great
number of letters with the feature. That fact, combined with the high
frequency of their usage in most languages, is also a very large (and
probably the even greater) factor.

When designing your italic, you can very effectively tune the effect
your italic gives by making relatively small adjustments to the height of
the joins. Subtle changes can give surprisingly large results. Still, not all
italic fonts take advantage of this variable.

In and out strokes

Many italic fonts make use of asymmetical serifs, in the form of in- or
out-strokes, or both. When only one is used, it is more common to use
the outstroke and to have an upright style applied where the instroke
might have been. The intensity of the effect that instroke and
outstroke has can be controlled by the weight of the strokes and by
adjusting how long they are. Like triangular counters, a great part of
their utility and power comes from the fact that so many letters use
them.

Condensation

Italics are normally somewhat less wide or more condensed than the
regular style. Because condensation is a feature seen across all of the
letters in the italic, it is a very powerful variable. This variable can be
employed in both a gross and subtle manner. If you choose to use this
variable, it is necessary to adjust the weight of the strokes to make
the italic appear to be the same or nearly the same weight as the
regular design. The more condensed your italic is, the more you will
need to make this adjustment.

MIXING VARIABLES

Most italics use all of the variables listed above in various proportions.
You may find that it is useful to look at a range of italic designs and
analyse which variables are being used and in what strength. When you
do this, you will notice that none of the variables are used at full
strength. Instead, one of the variables tends to lead, with some limited
use of the others. The stronger the use of the variables the more
contrast your italic will have from the regular.

50

In is also notable that in the last ten years we have seen an increasing
number of type designers choose to offer not just one italic in their
type families, but two or even more. It is also notable that dictionaries
sometimes make use of more than one style of italic.

When they were first made for printing, italics were not thought of as
part of the same type design or type family. This idea is one which
became standard over the 19th and 20th Centuries. Even the idea of
mixing italics with regular was not part of the original idea behind this
script. The first italic fonts were used to set entire books, instead of
the upright roman style. It is probably safe to assume that the role of
the italic will continue to evolve.

51

18. SPACING, METRICS, AND

KERNING
The spaces between characters are an important, integral part of the
design of a font. Designing a font's letter spacing should be carried out
as an integral part of the whole process of designing a font. Good
spacing is necessary for a font to function well.

In FontForge, the Metrics Window allows you to design the metrics of
your font, alter the spacing between them, and test how glyphs look
together. Metrics Windows can be opened from the 'Window' menu, or
by using the Control-k command.

The space between any two glyph has two components; the space
after the first glyph, and the space before the second glyph. These
spaces between glyphs are composed of the 'side bearings' from each
glyph pair. Each glyph has a left side bearing and a right side bearing, in
the example below of the lowercase 'a' of 'Open Sans' the right
sidebearing has a value of 166 units, and the left sidebearing has a
value of 94 units.

BASIC FUNCTIONS OF THE METRICS
WINDOW

The side bearings of characters can be edited in FontForge's Metrics
Window in 5 ways;

- manually dragging each side bearing boundary.

- manually dragging a character. Note though that dragging a character
will only effect the value of the left side bearing.

- side bearing values can be altered by directly editing their value in
the metrics tables of the Metrics Window.

- the value of side bearings can be incremented / decremented by
using the keyboard.

- using commands in the Metrics Window's Metrics menu.

Adjusting Side Bearing Values with the keyboard.

One method of adjusting metric values quickly and accurately in
FontForge is by using the 'up', 'down', 'left' and 'right' keys of a
keyboard. The 'up and 'down' keys are used to incrememt / decrement
values and 'alt+up', 'alt+down', 'alt+left' and 'alt+right' are used for
navigating around the different value fields of the Metrics Window.

GENERAL PRINCIPLES

As a general principle symmetric characters such as 'A' 'H' 'I' 'M' 'N' 'O'
'T ' 'U' 'V' 'W' 'X' 'Y' 'o' 'v' 'w' 'x' will have symmetric side bearings, e.g. a
the left and right side bearings of an 'H' will be the same value. Note
though that this is not a hard and fast rule, but a general one.

As you space the characters that you design, you should trust your
eyes. The bottom line is to 'design - look - adjust - look again'.

For the absolute beginner; do not assume that reliable results are
achieved by relying on the measured space. For example, whilst the
measurements between two characters may be unequal, the eye can
see them as equal. An obvious example of this can be seen when
attempting to space the characters 'H' and 'O'. So for the example
below, the side bearings of the 'H' and 'O' are equal, but look unequal.
In the lower line, the side bearings are not equal but the spacing
appears balanced.

METRICS MENU COMMANDS FOR EDITING

52

METRICS

'Center in Width' - This centers the current glyph within its current
width.

'Window Type' - FontForge's Metrics Window can be set to behave in 2
ways for metrics adjustment;

- 'Advance Width Only' - in this mode metrics view may only be used
to adjust the advance widths of glyphs.

- 'Both' - In this mode metrics view will adjust either the advance width
or kerning values.

'Set Width' - this command allows you to change the width of the
current glyph.

'Set LBearing' - allows you to change the left side bearing value.

'Set RBearing' - allows you to change the lright side bearing value.

A BASIC APPROACH TO SPACING

The following method is designed to get you started effectively
towards designing the metrics of your font.

Starting with a string of lowercase 'o' characters in the metrics window,
the left and right sidebearings can be adjusted until the spacing of the
characters looks and feels right. One way to look for this 'rightness' is
to look for the whitespace between the 'o' characters to balance the
whitespace inside the 'o' characters. In general, with the exception of
slanted or italic fonts, the left and right side bearings of a lowercase 'o'
should be of equal value. Once you are happy with the spacing of your
string of 'o' characters, introduce the 'n' character from your font (see
below) and then look to adjust the side bearings of the 'n' so that it's
spacing fits into the balance of the string of 'o' characters (see below).
Note that due to the nature of the way our eyes see, the right side
bearing of an 'n' will allways be a smaller value than the left side
bearing, and the side bearings of the 'o' will be smaller than the side
bearings of the 'n'.

 Once both the 'n' and 'o' are adequately spaced their sidebearings can
be used to create the sidebearings for an array of other characters,
for example;

- the right side bearing of the 'o' can be used for the right side bearing
of the 'c', 'd', 'e', and 'q'.

- the left side bearing of the 'o' can be used for the left side bearing
of the 'b' and 'p'.

- the right side bearing of the 'n' can be used for the left side bearing
of the 'h' and 'm'.

- the left side bearing of the 'n' can be used for the left side bearing
of the 'b', 'h', 'k', 'm', 'p' and 'r'.

Note - the above should be used as a guide only that can be used as a
super effective starting point for finding correct values for these side
bearings.

From here it makes sense to then space the rest of the side bearings
of the lowercase characters against strings of 'n' and 'o' characters, as
seen in the diagram above. Again, trust your eyes to reach correct
balance of characters.

UPPERCASE CHARACTERS

Uppercase characters can be spaced using the same principles as
above. For example, start with the string 'Hooooo' and adjust the right
side bearing of the 'H' untill it feels balanced against the string of 'o'
characters. With the left side bearing of the 'H' being equal to the right
side bearing, the uppercase 'O' can then be spaced against the 'H' (see
below).

53

From here all other characters can be spaced against the characters
which have already been spaced. It should be noted that this method
can be used as a good starting point for spacing a font, but it is likely
that more minute fine tuning of spacing will also be needed to achieve
higher levels of good letter spacing. Other strings of characters that
are usefull in this can be arrays such as 'naxna', 'auxua', 'noxno',
'Hxndo'.

KERNING

Kerning is the adjustment of the spacing between specific character
pairs. Kerning enables individual spacing of character pairs that is
applied in addition to the spacing provided by a character's side
bearings. Common examples of character pairs where kerning is often
needed to improve spacing would be 'WA', 'Wa', 'To', 'Av'. In the
examples below, we can see that without kerning the spacing between
the letter pairs 'T -o' and 'V-a' are too wide, whereas with kerning the
space between these character pairs is much more balanced with the
feel of the spacing of the rest of the font.

The Metrics Window in FontForge can be used to design both side
bearings for and kerning values. Kerning values can be applied to a
font in a number of ways in FontForge, 2 of these are shown below,
kerning with classes and kerning with individual pairs;

FONTFORGE'S METRICS MENU

'Window Type' - FontForge's Metrics window can be set to behave in 2
different ways to enable kerning adjustment;

- 'Kerning Only' - in this mode the metrics view may only be used to
adjust kerning.

- 'Both' - In this mode metrics view will adjust either the advance width
or kerning values.

'Kern By Classes' - This command provides the user with a dialog to
manipulate kerning classes.

'Kern Pair Closeup' - This command provides the user with a dialog
from which you can adjust already existing kerned pairs or create new
pairs (see below).

ADJUSTING KERNING VALUES WITH THE
KEYBOARD

54

Just like with adjusting side bearing values, kerning values can be quickly
and accurately edited in FontForge by using the 'up', 'down', 'left' and
'right' keys of a keyboard. The 'up and 'down' keys are used to
incrememt / decrement values and 'alt+up', 'alt+down', 'alt+left' and
'alt+right' are used for navigating around the different value fields of
the metrics window.

KERNING INDIVIDUAL PAIRS

This is the most basic level of creating kerning pairs in FontForge. In
the Metrics Window the kerning value between 2 characters can be
manually adjusted either by dragging the right-hand character to or
from the left-hand character, or by editing the kerning value directly in
the metrics table of the window. To change kerning values by dragging
characters use the kern-tool handle that appears when the mouse
cursor is hovered between 2 characters (see screeenshot below). The
kerning value in the metrics table can be edited by manuallly entering
values or by incrementing / decrementing the value using your
keyboards up / down keys.

KERNING WITH CLASSES

A 'kern class' in FontForge can be created to build groups of
characters who will all have the same kerning value applied, so for
example a class can be created, let's call it 'o_left_bowl' in which the
characters 'o', 'c', 'd', 'e', 'q' will allways have the same kerning value
when preceeded by, for example, the character 'T '. The 'T ' could also
itself be a member of another class that would likely include other
characters such as Tcaron and Tbar. Effectively, class kerning can save
you a lot of time.

The Element > Font Info > Lookups tab provides an interface to class
kerning in FontForge. The same interface is also got at via the
 It brings up a dialog showing all the GPOS lookups (of which kerning is
one) and their subtables. See screenshot below;

To create a new kerning lookup click on 'Add Lookup' and choose 'Pair
Position (kerning)' as the lookup type and give the lookup its own,
unique name (see below).

55

Each set of kerning classes lives in its own subtable. To create a
subtable, click on 'Add Subtable'. When you create a kerning subtable
you will be asked whether you want a set of individual kerning pairs or
a matrix based on classes. If you chose classes you will be presented
with a following dialogue where you can create your classes. Note that
you can choose to enable FontForge to 'guess' or 'autokern' the
kerning values between the classes you are creating in the dialogue. If
using FontForge to guess kerning values you will undoubtedly need an
amount of trial and error and experimentation, but it can make sense
to use the autokern function as a starting point to kerning your font.

For example in the screenshot above, 2 classes have been created; one
class containing the 'T ' character, and one class containing the 'o'
character. On clicking 'ok' in the above dialog, you will be presented
with the following window where you can fine tune the amount of
kerning between these two 'T ' and 'o' classes.

MANUAL KERNING

56

If autokerned values need to be adjusted (and they will!) then this can
be done in a number of ways.

- via the 'kerning by classes' dialog window.

- using the Metrics Window.

- using the 'Kern Pair Closeup' command from the Metrics menu.

57

19. MAKING SURE YOUR FONT

WORKS: VALIDATION
In a perfect world, your font would be ready to build and install on any
modern computer without any special effort, but reality is messier --
particularly during the design process. Fonts can have technical errors
that prevent them from working or displaying correctly. For example,
curves that intersect themselves will not render correctly because they
do not have a "inside" and "outside." The various font file formats also
expect glyphs to adhere to certain rules that simplify placing the text
on screen, and fonts that break the rules can cause unexpected
problems. An example of this type of issue is that all of the points on
a curve should have coordinates that are integers. Finally, there are
stylistic errors that are not technically incorrect, but that you will still
want to repair -- such as lines that are intended to be perfectly
horizontal or vertical, but are accidentally slightly off-kilter.

FontForge offers tools that you can use to locate (and, in many cases,
repair) all three categories of problem. Validating your font to
eliminate these errors will thus not only ensure that it can be installed
and enjoyed by users, but will ensure that finished project exhibits
polish.

FIND PROBLEMS

The first tool is called Find Problems, and is found under the Element
menu. You must first select one or more glyphs -- either from in the
font view, the outline view, or the metrics view -- then open the Find
Problems tool. The tool presents you with an assortment of potential
problems in eight separate tabs.

You can select which problems you are interested in looking for by
checking the checkbox next to each, and in some cases providing a
numeric value to check the font against. When you click the OK button,
the tool will examine all of the selected glyphs, and report any
problems it finds in a dialog box.

The problems that the Find Problems tool can look for are sorted into
these eight groups:

Problems related to points
Problems with paths and curves
Problems with references
Problems with hinting
Problems with ATT
Problems specific to CID-keyed fonts
Problems with bounding boxes
Miscellaneous other problems

Not every check is necessary; some apply only to specific scripts or
languages (such as those in the "CID" tab), while others apply only to
specific, optional font features (such as the checks in the references
tab). But you should check that your font passes those tests that
examine the glyphs for required features, and several tests that look
for optional but commonly-expected behavior. Several of the other
tests provide feedback and guidance to you during the design process,
and are worth exploring for that reason.

First things first: test for required features

In the "Points" tab, select the Non-Integral Coordinates test. This test
makes sure that all of the points in each glyph (including both on-curve
points and control points) have integer coordinates. Not every font
output format requires this behaviour, but some do.

In the "Paths" tab, select the options Open paths and Check outermost
paths clockwise. These are both mandatory features in all fonts; the
first looks for any curves that are not closed shapes, and the second
makes sure that the outer curves of every glyph are traced in
clockwise order. It is a very good idea to check Intersecting paths as
well; although modern font formats can support two intersecting
paths, curves that insect with themselves are not allowed. In addition, if
a glyph has any self-intersecting paths then FontForge cannot perform
the Check outermost paths clockwise test.

58

In the "Refs" tab, select all six tests. These checks all relate to
references, in which a glyph includes paths from another glyph. For
example, an accented letter includes a reference to the original
(unaccented) letter, plus a reference to the accent character. All of the
tests in the "Refs" tab are mandatory for at least one common output
format, and all are good ideas.

Similarly, select all of the tests in the "ATT" tab. These tests look for
missing glyph names, substitution rules that refer to non-existent
glyphs, and other problems related to glyph names or OpenType
features. The problems they guard against are uncommon, but all will
cause the font to be considered invalid by one or more computer
system, so they are worth including.

Make life easier for your users: test for good behaviour

The tests listed above will ensure that your font installs and renders
correctly according to the rules set out by the various font formats,
but there are a handful of others tests you should consider adding --
especially at the end of the design process -- simply because they
check for common conventions followed by most modern typography.

In the "Points" tab, select Control points beyond spline. This test will
look for control points lying beyond the endpoints of the curve
segment on which they reside. There is rarely a reason that a control
point should lie outside of the curve, so these instances usually signify
accidents. It is also a good idea to select Points too far apart, which will
look for points that are more than 32767 units away from the next
nearest point. That distance is larger than most computers can deal
with internally, and a point that far away is almost certainly
unintentional (for comparison, a single glyph tends to be drawn on a
grid of about 1000 units), so removing such points is important.

In the "Paths" tab, both the Check Missing Extrema and More Points Than
[val] tests can be valuable. The first looks for points at the extrema --
that is, the uppermost point, lowest point, and leftmost and rightmost
points of the glyph. Modern font formats strongly suggest that each
path have a point at each of its horizontal and vertical extrema; this
makes life easier when the font is rendered on screen or on the page.
check will look for missing extrema points. The second test is a sanity
check on the number of points within any one glyph. FontForge's
default value for this check is 1,500 points, which is the value suggested
by the PostScript documentation, and it is good enough for almost all
fonts.

As its name suggests, the "Random" tab lists miscellaneous tests that
do not fit under the other categories. Of these, the final three are
valuable: Check Multiple Unicode, Check Multiple Names, and Check
Unicode/Name mismatch. They look for metadata errors in the mapping
between glyph names and Unicode slots.

Help yourself: run tests that can aid design

Many of the other tests in the Find Problems tool can be useful to find
and locate inconsistencies in your collection of glyphs; things that are
not wrong or invalid, but that you as a designer will want to polish. For
example, the Y near standard heights test in the "Points" tab compares
glyphs to a set of useful vertical measurements: the baseline, the
height of the "x" glyph, the lowest point of the descender on the letter
"p", and so on. In a consistent typeface, most letters will adhere to at
least a couple of these standard measurements, so the odds are that
a glyph that is nowhere near any of them needs a lot of work.

The Edges near horizontal/vertical/italic test in the "Paths" tab looks for
line segments that are almost exactly horizontal, vertical, or at the
font's italic angle. Making your almost-vertical lines perfectly vertical
means that shapes will render sharply when the font is used, and this
test is a reliable way to track down the not-quite-right segments that
might be hard to spot with the unaided eye.

You can use other tests to locate on-curve points that are too close
to each other to be meaningful, to compare the side bearings of
similarly-shaped glyphs, and to perform a range of other tests that
reveal when you have glyphs with oddities. Part of the refinement
process is taking your initial designs and making them more precise;
like other aspects of font design, this is an iterative task, so using the
built-in tools reduces some of the repetition.

VALIDATE FONT

FontForge's other validation tool is the whole-font validator, which runs
a battery of tests and checks on the entire font. Because the validator
is used to examine a complete font, you can only start it up from the
font view window; you will find it in the Element menu, under the
Validation submenu. The validator is deigned to run just those tests
that examine the font for technical correctness -- essentially the tests
described in the "test for required features" section above. But it does
execute the tests against the entire font, and it does so far more
rapidly than you can step through the process yourself using the Find
problems tool.

59

The first time you run the validator during a particular editing session,
it will pop up a dialog box asking you whether or not it should flag
non-integer point coordinates to be an error. The safe answer is to
choose "Report as an error," since sticking with integral coordinates is
good design practice. When the validator completes its scan of the
font (which will be mere seconds later), it will open up a new dialog box
named Validation of Whatever Your Font Name Is. This window will list
every problem the validator found, presented in a list sorted by glyph.

But this window is not merely a list of errors: you can double-click on
each item in the list, and FontForge will jump to the relevant glyph and
highlight the exact problem, complete with a text explanation in its
own window. You can then fix the problem in the glyph editor, and the
associated error item will immediately disappear from the validator's
error list. In many cases, the error will be something FontForge can
automatically repair; in those cases the explanation window will have a
"Fix" button at the bottom. You can click it and perform the repair
without additional effort.

For some problems, there is no automatic fix, but seeing the issue on-
screen will help you fix it immediately. For example, a self-intersecting
curve has a specific place where the path crosses over itself -- it may
have been too small for you to notice at a glance, but zooming in will
allow you to reshape the path and eliminate the problem.

For other problems, there may not be one specific point at which the
error is located. For example, if a curve is traced in the wrong direction
(that is, counterclockwise when it should be clockwise), the entire curve
is affected. In those instances where FontForge cannot automatically
fix the problem and there is no specific point on the glyph for the
validator to highlight, you may have to hunt around in order to
manually correct the problem.

Finally, there are some tests performed by the validator that might
not be a problem from the final output format you have in mind -- for
example, the non-integral coordinates test mentioned earlier. In those
cases, you can click on the "ignore this problem in the future"
checkbox in the error explanation window, and suppress that particular
error message in future validation runs.

FIX PROBLEMS AS YOU EDIT

Most of the errors that the Find problem tool and the whole font
validator look for can be corrected during the editing process, so do
not feel any need to defer troubleshooting while you work. For
example, View > Show submenu has options that highlight problem
areas during editing; the Element menu hold commands like Add
Extrema that will add the extrema points expected in most output file
formats, and checkboxes to indicate whether the selected path is
oriented in the clockwise or counterclockwise direction. If you flip a
shape (horizontally or vertically) in the glyph editor, you will notice that
its direction is automatically reversed as well. If you click on the Correct
Direction command in the Element menu, FontForge will fix the
clockwise/counterclockwise orientation immediately. Getting in the
habit of doing small fixes like this as you work will save you a bit of
time during the validation stage later.

60

20. THE FINAL OUTPUT:

GENERATING FONT FILES
Although you can do a wide range of testing within FontForge itself,
you will need to generate installable font files in order to perform real-
world testing during the development process. In addition, your
ultimate goal is of course to create font that you can make available in
an output format for other people to install and use. You will use the
Generate Fonts tool (found in the File menu) to build a usable output
font regardless of whether you are making it for your own testing
purposes or to publish it for consumption by others, but you will want
to employ a few extra steps when building the finished product.

FontForge can export your font to a variety of different formats, but
in practice only two are important: T rueType (which is found with the
.ttf filename extension) and OpenType CFF (which is found with the .otf
extension). Technically the OpenType format can encompass a range
of other options, but the CFF type is the one in widespread use.

QUICK AND DIRTY GENERATION FOR
TESTING

To build a font file for testing purposes -- such as to examine the
spacing in a web browser -- you need only to ensure that your font
passes the required validation tests.

You can use the Validate Font tool found in the Element menu to do
this (see the chapter on validating fonts for a more detailed
explanation), or you can select all of the glyphs (hit Control-A or
choose "Select" -> "Select All" from the "Edit" menu) then run a few
commands to apply some basic changes in bulk. Be sure to save your
work before you proceed any further, though: some of the changes
required to validate your font for export will alter the shapes of your
glyphs in subtle ways.

For OpenType fonts, first correct the direction of all of your paths. Hit
Control-Shift-D or choose "Correct Direction" from the "Element"
menu. Next, check to make sure that you have not left any unclosed
paths. Choose "Find problems" from the "Element" menu, select the
Open paths option in the "Paths" tab, and click OK to run the test. Once
your font passes the test without errors, you are ready to generate
OpenType output.

For T rueType fonts, a few additional steps are required. You should
first correct the direction of all of your paths as described above.
Next, adjust all points to have integer coordinates: either hit Control-
Shift-_ (underscore), or choose To Int from the "Element" -> "Round"
menu. Finally, open the "Find problems" tool, select the Open paths test
as described above, and also select all of the tests in the "Refs" tab.

After you can run these tests without errors, you will then need to
convert your paths to quadratic curves. Open the "Font Info" window
from the "Element" menu. Click on the "Layers" tab, and check the All
layers quadratic option. Click OK at the bottom of the window, and you
are ready to generate T rueType output.

Building the font files

Open the Generate Fonts window by choosing it from the "File" menu.
The top half of the window shows the familiar file-chooser options --
a list of the files found in the current directory, a text-entry box for
you to enter a filename, and buttons to navigate to other folders and
directories if necessary. This is strictly a means to help you quickly find
the right place to save your output file, or to choose an existing font
file if you intend to overwrite a previous save. All of the options you
need to look at are found in the bottom half of the window.

61

On the left-hand side is a pull-down menu from which you select the
format of the font you wish to generate. You should choose either
TrueType or OpenType (CFF), as discussed earlier. On the right-hand side,
make sure No Bitmap Fonts is selected. On the line below, make sure No
Rename is selected for the "Force glyph names to:" option. You can
check the "Validate Before Saving" option if you wish (to potentially
catch additional errors), but this is optional. Leave the "Append a
FONTLOG entry," "Prepend timestamp," and "Upload to the Open Font
Library" options unchecked.

Click the "Generate" button, and FontForge will build your font file. You
can load the font in other applications and run any tests, but when you
are ready to return to editing, remember to re-open the saved version
of your font that you created before generating your .ttf or .otf
output.

GENERATING FOR FINAL RELEASE

Designing your font is an iterative process, but eventually the day
when come when you must declare your font finished -- or at least
ready for public consumption. At that point, you will again generate a
.ttf or .otf output file (perhaps even both), but before doing so you will
need to work through a few additional steps to create the most
standards-compliant and user-friendly version of your font file.

First, follow the same preparation steps outlined in the section on
quick and dirty generation for testing purposes. In particular,
remember to change your font to All layers quadratic if you are
creating a T rueType file.

Remove overlaps

As you know, it is a good idea to keep your letter-forms as
combinations of discrete components as you design: stems, bowls,
serifs, and other pieces of each glyph. But although this technique is
great for designing and refining forms,you want your final, published
font to have simple outlines of each glyph instead. This reduces file
size a bit, but more importantly it cuts down on rendering errors.

FontForge has a Remove Overlap command that will automatically
combine the separate components of a glyph into a single outline.
Select a glyph (or even select all glyphs with Control-A), then hit
Control-Shift-O or choose Remove Overlap from the "Element" ->
"Overlap" menu. One caveat is worth watching out for, however:
FontForge cannot merge shapes if one of the shapes is traced in the
wrong direction (that is, if the outermost path is counterclockwise). A
path traced in the wrong direction is an error of its own, though, which
you should fix anyway.

Simplify contours and add extrema points

You should also simplify your glyphs where possible -- not eliminating
details, but eliminating redundant points. This reduces files size slightly
for every glyph, which adds up considerably over the entire set of
characters in the font.

From the "Element" menu, choose "Simplify" -> Simplify (or hit Control-
Shift-M). This command will merge away redundant on-curve points in
all of the selected glyphs. In some cases, there will be only a few points
removed, in others there may be many. But it should perform the
simplification without noticeably changing the shape of any glyphs. If
you notice a particular glyph that is altered too much by Simplify, feel
free to undo the operation. You can also experiment with the Simplify
More command also located in the same menu; it offers tweakable
parameters that could prove helpful.

In any event, after you have completed the simplification step, you will
need to add any missing extrema points. Choose Add Extrema from
the "Element" menu (or hit Control-Shift-X). As discussed earlier, it is a
good idea to place on-curve points at the extrema of every glyph as
you edit. Nevertheless, you must still perform this step when preparing
for final output generation because the Simplify step will occasionally
remove an extrema point.

Round everything to integer coordinates

The final preparation step to perform is to round all points (both on-
curve points and control points) to integer coordinates. This is
mandatory for generating T rueType output, but is highly
recommended for OpenType output as well. It can result in sharper
rendering and better grid-fitting when the fonts are displayed, without
any additional design work.

To round all points to integer coordinates, choose "Element" ->
"Round" -> To Int.

As soon as this operation is completed, you may notice something
puzzling. Sometimes, simply due to the peculiarities of the curves
involved, the processes of rounding to integer coordinates, simplifying
glyphs, and adding missing extrema can work against each other. An
example of when this might occur is when a curved outer edge has a
control point that lies just past the horizontal or vertical; in this
situation rounding it to integer coordinates can shift the curve slightly
and change where the extrema lies.

There is not a one-shot solution to this conundrum; the only
guaranteed fix is to repeat the cycle of steps for the affected glyphs
until they stabilize at a point where the three operations no longer
interfere with each other. This may take multiple cycles, but it is a rare
occurrence.

Validate

62

Your font should pass the required validation tests before you
generate your final output. As with the rounding-points-to-integer-
coordinates step, though, sometimes the other preparatory operations
can introduce errors, so it is always a good idea to run the whole-font
validator at this stage before building the final output. The chapter on
FontForge's validation tools will give you more detail on what to check.

A word about hinting

Hinting refers to the use of mathematical instructions to render the
vector curves in a font in such a way that they line up nicely with the
pixel grid of the rasterized output device (whether that grid is
composed of dots of ink or toner on paper, or luminescent dots on a
computer monitor).

FontForge allows you to hint your font (and even provides an Autohint
function), but in practice this step is not strictly necessary. Modern
operating systems often have better grid-fitting functionality built into
their text rendering engines than you can create yourself without
expending considerable time and effort. In fact, Mac OS X and Linux
both ignore any hints embedded in the font file itself. If you do decide
your font needs hinting for the benefit of Windows users, your best
bet is to build the font without embedded hints, then use a specialized
application such as ttfautohint to add hinting after the fact.

Check your metadata

Last but certainly not least, once your font has been thoroughly
prepared technically for export, you should pause and update the font
metadata, making sure that important metadata information is
included, and that it is up to date.

First, if this is the initial release of your font, open the Font Info dialog
from the "Element" window, and select the "PS Names" tab. Fill in the
font's Family Name and Weight first, then copy that information into
the "Name for Humans" box. Although using version numbers is not
required, it is extremely helpful for you as a designer to differentiate
between different revisions of your work. Enter "1.0" as the "Version"
number if you are not sure. Next, visit the "TTF Names" tab and enter
the same information.

As is the case with version numbers, it is helpful in the long run for you
to make log entries for each revision. Go to the "FONTLOG" tab and
write a brief sentence or two explaining what changes if any have gone
into the revision that you are building for release. If this is your initial
log entry, you should also describe your font and its purpose in a
sentence or two.

Fonts, like all creative works, need to have a license, so users will know
what they are and are not allowed to do. FontForge has a button in
the "TTF Nmes" tab labeled "Add SIL Open Font License." The Open
Font License (OFL) is a font license designed to allow you to share your
font with the public with very few restrictions on how where it is used,
while still protecting you as the designer from having others take
credit for your work or creative derivatives of your font that wil be
confused for the original. Clicking the button will add "License" and
"License URL" strings to the TTF Names metadata. If you have another
license you would prefer to use instead of the OFL, enter it in the
"License" field instead.

63

If you have made significant changes to other features of your font, it
is a good idea to double-check the other font-wide settings in the Font
Info window, and make sure everything is still up to date. Line spacing
information, for example, is found in the "OS/2" tab under "Metrics."

Building the font files

The process for generating the font output files is the same when you
are building the final release as it is when you are building a quick-and-
dirty copy for testing, but you will want to pay closer attention to
some of the options.

Open the Generate Fonts window by choosing it from the "File" menu.
Again, the top half of the window allows you to choose the directory
and file name to give to your output file -- just be careful that you do
not overwrite a previous save.

In the left-hand side pull-down menu, select the format of the font you
are generating, either TrueType or OpenType (CFF), as discussed earlier.
On the right-hand side, make sure No Bitmap Fonts is selected. On the
line below, make sure No Rename is selected for the "Force glyph
names to:" option. You can check the "Validate Before Saving" option
if you wish (to potentially catch additional errors), but this is optional.
Leave the "Append a FONTLOG entry," "Prepend timestamp," and
"Upload to the Open Font Library" options unchecked.

Next, click on the "Options" button. Select the PS Glyph Names,
OpenType, and Dummy DSIG options in the window that pops up, and
deselect everything else.

Click the "Generate" button, and FontForge will build your font file. One
final ord: it is important not to overwrite the saved version of your
FontForge work with the modifications you made in this section solely
to generate your .ttf or .otf output. For example, you lose a lot of
individual glyph components when you perform the Remove overlaps
operation. But the next time you resume work on your font, you will
definitely want to pick up where you left off in the original, individual-
glyph-component-filled version.

Consequently, if you decide to save the modified version of your
FontForge file, be sure that you rename it in a memorable way, such as
MyFont-TTF.sfd or MyFont-OTF.sfd. But you do not necessarily need to
save these output-oriented variations of your file at all -- in practice,
the next time you revise your original work in FontForge, you will work
through the output preparation steps again anyway.

Congratulations are in order! You have now created your first font. All
that remains now is for you to share your work: upload it to the web,
post it to your blog, and go tell your friends.

Without doubt, you will be back and continue revising and refining your
typeface -- after all, as you have seen, font design is an highly iterative
process. But be sure that you pause and take this moment to enjoy
what you have accomplished first.

64

APPENDICES
21. WHEN THINGS GO WRONG WITH
FONTFORGE ITSELF
22. GLOSSARY
23. FURTHER READING

65

21. WHEN THINGS GO WRONG

WITH FONTFORGE ITSELF
If you find FontForge crashing whilst in use you might like to send
information to the fontforge developer mailing list at
https://lists.sourceforge.net/lists/listinfo/fontforge-devel. This way, a
software developer might be able to work out where the code is going
wrong and apply a fix. You can then either patch your local FontForge,
or just grab the sources from github as detailed in the Installing
chapter to get an updated FontForge free of the defect you reported.

To help developers find out what is going wrong, they will want a
backtrace from your session. The backtrace includes a list of which
program functions have called which other ones to get to where the
program has stopped working. The backtrace is most useful if it also
contains the line numbers of the functions. Because the backtrace will
make reference to source files and line numbers, don't forget to also
tell the developers which version of FontForge you are using.
Optionally, you might also like to mention what you were doing leading
up to the crash.

USING THE GNU DEBUGGER TO REPORT
CRASHES

A backtrace is generated using the GNU Project Debugger (gdb). You
can either attach gdb to an already running FontForge, or start
fontforge inside the gdb session itself as shown below.

$ gdb fontforge
GNU gdb (GDB) Fedora (7.3.50.20110722-16.fc16)
Copyright (C) 2011 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show
copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /usr/local/bin/fontforge...done.

Then once you issue the debugger the run command, FontForge will open
on screen;

(gdb) run
Starting program: /usr/local/bin/fontforge
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
Copyright (c) 2000-2012 by George Williams.
 Executable based on sources from 14:57 GMT 31-Jul-2012-ML-TtfDb-D.
 Library based on sources from 14:57 GMT 31-Jul-2012.

From here you can use FontForge in the usual way, but with the
advantage of being able to effectively capture and report any issues
that FontForge may have.

One major difference that running FontForge inside gdb makes is how
a crash is made apparent. Without gdb, when FontForge crashes it will
disappear from your screen. When you are running FontForge inside
gdb however, a crashed FontForge will remain open along with its
windows and user interface.

If you find that your interface is unresponsive, switch back to the
terminal where you ran gdb and you might see something like
"SIGSEGV" in the text followed by the (gdb) prompt. If you see the
(gdb) prompt then FontForge is no longer executing. At this stage, use
the "bt" command to get a backtrace as shown in the example below.

As you can see in the example backtrace FontForge has crashed inside
the copy() function. The copy() function was itself called from the
KCD_AutoKernAClass function. The backtrace will tell a software
developer the exact lines these calls were made, and also use the tip
that the parameter passed to copy() was invalid (out of bounds) to
work out what the code is doing wrong.

Program received signal SIGSEGV, Segmentation fault.
0x00007ffff74a7c01 in ?? () from /lib/x86_64-linux-gnu/libc.so.

 (gdb) bt
 #0 0x00007ffff74a7c01 in ?? () from /lib/x86_64-linux-gnu/libc.so.6
#1 0x00007ffff6389a80 in copy (str=0x900000008

) at memory.c:82
#2 0x00007ffff7a4aeb5 in KCD_AutoKernAClass
(kcd=kcd@entry=0xe80c40, index=2, is_first=is_first@entry=1)
 at kernclass.c:236
#3 0x00007ffff7a51405 in KCD_FinishEdit (g=0xeb0fe0, r=1, c=,
wasnew=1) at kernclass.c:2020
#4 0x00007ffff5effe2d in GME_SetValue (gme=gme@entry=0xeb0fe0,
g=0xe94760) at gmatrixedit.c:988
#5 0x00007ffff5f00554 in GME_FinishEdit (gme=0xeb0fe0) at
gmatrixedit.c:997
#6 0x00007ffff5f01c1a in GMatrixEditGet (g=g@entry=0xeb0fe0,
rows=rows@entry=0x7fffffffcf78)
 at gmatrixedit.c:2214
#7 0x00007ffff7a4ea3c in KCD_Expose (event=0x7fffffffd1e0,
pixmap=0x83ae00, kcd=0xe80c40)
 at kernclass.c:1446
#8 kcd_e_h (gw=0x83ae00, event=0x7fffffffd1e0) at kernclass.c:1762
#9 0x00007ffff5eabe8f in _GWidget_Container_eh
(gw=gw@entry=0xe7f040, event=event@entry=0x7fffffffd1e0)
 at gcontainer.c:269
#10 0x00007ffff5eac385 in _GWidget_TopLevel_eh (event=0x7fffffffd1e0,
gw=0xe7f040) at gcontainer.c:734
#11 _GWidget_TopLevel_eh (gw=0xe7f040, event=0x7fffffffd1e0) at
gcontainer.c:606
#12 0x00007ffff5ef86ce in GXDrawRequestExpose (gw=0xe7f040,
rect=0xef72b0, doclear=)
 at gxdraw.c:2687

66

#13 0x00007ffff5eea075 in gtextfield_focus (g=0xef72a0,
event=0x7fffffffd2e0) at gtextfield.c:1888
#14 0x00007ffff5eaa857 in _GWidget_IndicateFocusGadget (g=0xe94760,
mf=mf@entry=mf_normal)
 at gcontainer.c:143
#15 0x00007ffff5eaac97 in GWidgetIndicateFocusGadget (g=) at
gcontainer.c:155
#16 0x00007ffff5f02b1e in GME_StrSmallEdit (event=0x7fffffffd670,
str=0xe10e60 "A", gme=0xeb0fe0)
 at gmatrixedit.c:890
#17 GMatrixEdit_StartSubGadgets (gme=gme@entry=0xeb0fe0, r=1,
c=c@entry=0, event=event@entry=0x7fffffffd670)
 at gmatrixedit.c:1472
#18 0x00007ffff5f03d69 in GMatrixEdit_MouseEvent (event=0x7fffffffd670,
gme=0xeb0fe0) at gmatrixedit.c:1499
#19 matrixeditsub_e_h (gw=, event=0x7fffffffd670) at gmatrixedit.c:1735
#20 0x00007ffff5eabd98 in _GWidget_Container_eh (gw=0xeeb2e0,
event=0x7fffffffd670) at gcontainer.c:393
#21 0x00007ffff5ef6555 in dispatchEvent (gdisp=gdisp@entry=0x769a50,
event=event@entry=0x7fffffffd9b0)
 at gxdraw.c:3475
#22 0x00007ffff5ef7d1e in GXDrawEventLoop (gd=0x769a50) at
gxdraw.c:3574
#23 0x00007ffff7ad353a in fontforge_main (argc=, argv=) at startui.c:1196
#24 0x00007ffff736676d in __libc_start_main () from /lib/x86_64-linux-
gnu/libc.so.6
#25 0x00000000004006e1 in _start ()
(gdb) quit
A debugging session is active.

 Inferior 1 [process 19196] will be killed.

Quit anyway? (y or n) y

Use the quit gdb command to exit from gdb and to close the crashed
FontForge. If you can send a good backtrace to the fontforge
developers then you can help to improve the stability of the program
for everybody! Don't feel shy about reporting these issues, a crash
that doesn't get reported is a crash that is far less likely to be fixed.

67

22. GLOSSARY

A

Abjad

Abjad is the technical term for the type of writing system used by
Semitic languages (Hebrew, Arabic, etc.), where there are glyphs for all
the consonants but the reader must be prepared to guess what vowel
to add between two consonants.

Both Hebrew and Arabic have optional vowel marks and are called
"impure" abjads. Ancient Phoenician had nothing but consonants and is
a "pure" abjad.

See Also: alphabet, abugida, syllabary and the relevant Wikipedia
article (http://en.wikipedia.org/wiki/Abjad).

Abugida

An abugida is somewhere in between an alphabet and a syllabary. The
Indic writing systems are probably the best known abugidas.

In most abugidas there are independant glyphs for the consonants,
and each consonant is implicitly followed by a default vowel sound. All
vowels other than the default will be marked by either diacritics or
some other modification to the base consonant.

An abugida differs from a syllabary in that there is a common theme
to the the images representing a syllable beginning with a given
consonant (that is, the glyph for the consonant), while in a syllabary
each syllable is distinct even if two start with a common consonant.

An abugida differs from an abjad in that vowels (other than the
default) must be marked in the abugida.

See Also: alphabet, abjad, syllabary and the relevant Wikipedia
article (http://en.wikipedia.org/wiki/Abugida).

Accent

See Diacritics

Advance Width

The distance between the start of this glyph and the start of the next
glyph. Sometimes called the glyph's width. See also Vertical Advance
Width.

Alphabet

A writing system where there are glyphs for all phonemes --
consonants and vowels alike -- and (in theory anyway) all phonemes in
a word will be marked by an appropriate glyph.

See Also: abjad, abugida, syllabary and the relevant Wikipedia
article (http://en.wikipedia.org/wiki/Alphabet).

Apple Advanced Typography

Apple's extension to basic T rueType fonts. Includes contextual
substitutions, ligatures, kerning, etc. Also includes distortable fonts.

Arm

The piece of the letter r that hangs off to the right.

Ascender

A stem on a lower case letter which extends above the x-height. "l"
has an ascender.
See also X-height, Cap-height, Descender, Overshoot, Baseline

Anchor Class

Used to specify mark-to-base and cursive GPOS subtables.

Ascent

In traditional typography the ascent of a font was the distance from
the top of a block of type to the baseline.

Its precise meaning in modern typography seems to vary with
different definers.

ATSUI

Apple's advanced typographical system. Also called Apple Advanced
Typography.

B

Baseline

The baseline is the horizontal line on which the (latin, greek, cyrillic)
letters sit. The baseline will probably be in a different place for
different scripts. In Indic scripts most letters descend below the
baseline. In CJK scripts there is also a vertical baseline usually in the
middle of the glyph. The BASE and bsln tables allow you to specify
how the baselines of different scripts should be aligned with respect to
each other.

See also X-height, Cap-height, Ascender, Descender, Overshoot

68

http://en.wikipedia.org/wiki/Abjad
http://en.wikipedia.org/wiki/Abugida
http://en.wikipedia.org/wiki/Alphabet

Bézier curve or Bézier splines

Bézier curves are described in detail in the Bézier section of the main
manual.

Bidi

Bi-Directional text. That is a section of text which contains both left-
to-right and right-to-left scripts. English text quoting Arabic, for
example. Things get even more complex with nested quotations.
TheUnicode standard contains an algorithm for laying out Bidi text.
See also: Boustrophedon.

Black letter

Any of various type families based on medieval handwriting.

See also gothic.

BMP (Basic Multilingual Plane)

The first 65536 code points of Unicode. These contain most of the
ordinary characters in the modern world. See Also

SMP: Supplementary Multilingual Plane (0x10000-0x1FFFF)
SIP: Supplementary Ideographic Plane (0x20000-0x2FFFF)
SSP: Supplementary Special-purpose Plane (0xE0000-0xEFFFF)

Bold

A common font style. The stems of the glyphs are wider than in the
normal font, giving the letters a darker impression. Bold is one of the
fewLGC styles that translate readily to other scripts.

Bowl

The round part of the letter.

Bopomofo

A (modern~1911) Chinese (Mandarin) alphabet used to provide phonetic
transliteration of Han ideographs in dictionaries.

Boustrophedon

Writing "as the ox plows", that is alternating between left to right and
right to left writing directions. Early alphabets (Old Canaanite, and the
very early greek writings (and, surprisingly, fuþark)) used this. Often the
right to left glyphs would be mirrors of the left to right ones. As far as
I know, no modern writing system uses this method (nor does
OpenType have any support for it). See Also Bidi.

C

Cap-height

The height of a capital letter above the baseline (a letter with a flat
top like "I" as opposed to one with a curved one like "O").

See also X-height, Ascender, Descender, Overshoot, Baseline

CFF

Compact Font Format most commonly used within OpenType
postscript fonts, but is a valid font format even without a
SFNTwrapper. This is the native font format for fonts with PostScript
Type2 charstrings.

Character

A character is a Platonic ideal reified into at least one glyph. For
example the letter "s" is a character which is reified into several
different glyphs: "S", "s", "s", long-s, etc. Note that these glyphs can
look fairly different from each other, however although the glyph for
an integral sign might be the same as the long-s glyph, these are in
fact different characters.

Character set

A character set is an unordered set of characters.

CID

Character Identifier, a number. In some CJK PostScript fonts the glyphs
are not named but are refered to by a CID number.

CID-keyed font

A PostScript font in which the glyphs are index by CID and not by
name.

CJK

Chinese, Japanese, Korean. These three languages require fonts with a
huge number of glyphs. All three share a writing system based on
Chinese ideographs (though they have undergone separate evolution in
each country, indeed mainland Chinese fonts are different from those
used in Taiwan and Hong Kong).

Japanese and Korean also have phonetic syllabaries. The Japanese have
two syllabaries, Hiragana and katakana which have about 60 syllables.
The Koreans have one syllabary, hangul with tens of thousands of
syllables.

CJKV

69

Chinese, Japanese, Korean, Vietnamese. These four languages require
fonts with a huge number of glyphs.

Condensed

A condensed font is one where the space between the stems of the
glyphs, and the distance between glyphs themselves has been reduced.

Conflicting hints

If a glyph contains two hints where the start or end point of one is
within the range of the other then these hints conflict. They may not
be active simultaneously.

Counter

The counter of a glyph is the white part which is either fully or partially
enclosed. The o and n both have counters. The i and l do not. The e
and both have counters. The B has two counters.

D

Descender

A stem on a lower case letter which extends below the baseline. "p"
has a descender.
See also X-height, Cap-height, Ascender, Overshoot, Baseline

Descent

In traditional typography the descent of a font was the distance from
the bottom of a block of type to the baseline.

Its meaning in modern typography has become less precise.

Device Table

A concept in OpenType which allows you to enter spacing adjustments
geared to rasterization at particular pixel sizes. If a kerning value that
works most of the time leads to an ugly juxtaposition of glyphs on a 12
pixel high font, then you can add a special tweak to the spacing that
only is applicable at 12 pixels (and another one at 14 and 18, or
whatever is needed). Similar functionality is needed for anchored
marks.

Diacritics

Many lanaguges use letters which have have marks above or below
them of even crossing the letters. These marks are called diacritics.
Sometimes they are also caleed "accents" although this is a less
precise term. Examples of these letters include À à å Å Ü ü Ø ø Ç ç.

Didot point

The European point. 62 2/3 points per 23.566mm (2.66pt/mm or
67 .55pt/inch). There is also a "metric" didiot point: .4mm.

Distortable font

See Multi-Master

E

em

A linear unit equal to the point size of the font. In a 10 point font, the
em will be 10 points. An em-space is white-space that is as wide as the
point size. An em-dash is a horizontal bar that is as wide as the point
size.

An em-square is a square one em to each side. In traditional
typography (when each letter was cast in metal) the glyph had to be
drawn within the em-square.

em unit

In a scalable font the "em" is subdivided into units. In a postscript font
there are usually 1000 units to the em. In a T rueType font there might
be 512, 1024 or 2048 units to the em. In an Ikarus font there are 15,000
units. FontForge uses these units as the basis of its coordinate system.

en

One half of an "em"

Encoding

An encoding is a mapping from a set of bytes onto a character set. It
is what determines which byte sequence represents which character.
The words "encoding" and "character set" are often used
synonymously. The specification for ASCII specifies both a character
set and an encoding. But CJK character sets often have multiple
encodings for the character set (and multiple character sets for some
encodings).

In more complicated cases it is possible to have multiple glyphs
associated with each character (as in arabic where most characters
have at least 4 different glyphs) and the client program must pick the
appropriate glyph for the character in the current context.

Eth -- Edh

The old germanic letter "ð" for the voiced (English) "th" sound (the
sound in "this" -- most English speakers aren't even aware that "th" in
English has two sounds associated with it, but it does, see also Thorn)

70

Even-Odd Fill rule

To determine if a pixel should be filled using this rule, draw a line from
the pixel to infinity (in any direction) then count the number of times
contours cross this line. If that number is odd then fill the point, if it is
even then do not fill the point. This method is used for fonts by
postscript rasterizers after level 2.0 of PostScript. See Also Non-Zero
Winding Number Fill.

Extended

An extended font is one where the space between the stems of the
glyphs, and the distance between glyphs themselves has been
increased.

Extremum (plural: Extrema)

An extremum is the point on a mathematical curve where the curve
attains its maximum or minimum value. On a continuous curve this can
happen at the endpoints (which is dull) or where dx/dt=0 or dy/dt=0.

In font design, the extrema of a glyph are the top-most and bottom-
most points of the outline, as well as its left-most and right-most
points. Making sure that a glyph has on-curve points at all of its
extrema is important, because it simplifies text rendering when the
font is used.

F

Features (OpenType)

When creating fonts for complex scripts (and even for less complex
scripts) various transformations (like ligatures) must be applied to the
input glyphs before they are ready for display. These transformations
are identified as font features and are tagged with (in OpenType) a 4
letter tag or (in Apple) a 2 number identfier. The meanings of these
features are predefined by MicroSoft and Apple. FontForge allows you
to tag each lookup with one or several features when you create it (or
later).

Feature File

This is a text syntax designed by Adobe to describe OpenType
features. It can be used to move feature and lookup information from
one font to another.

Feature/Settings (Apple)

These are roughly equivalent to OpenType's Features above, they are
defined by Apple.

Font

A collection of glyphs, generally with at least one glyph associated with
each character in the font's character set, often with an encoding.

A font contains much of the information needed to turn a sequence of
bytes into a set of pictures representing the characters specified by
those bytes.

In traditional typesetting a font was a collection of little blocks of
metal each with a graven image of a letter on it. T raditionally there
was a different font for each point-size.

Font Family, or Family

A collection of related fonts. Often including plain, italic and bold styles.

FreeType

A library for rasterizing fonts. Used extensively in FontForge to
understand the behavior of truetype fonts and to do better
rasterization than FontForge could accomplish unaided.

Fuþark (Futhark)

The old germanic runic script.

G

Ghost Hint

Sometimes it is important to indicate that a horizontal edge is indeed
horizontal. But the edge has no corresponding edge with which to
make a normal stem. In this case a special hint is used with a width of -
20 (or -21). A ghost hint must lie entirely within a glyph. If it is at the
top of a contour use a width of -20, if at the bottom use -21. Ghost
hints should also lie within BlueZones.
(The spec also mentions vertical ghost hints, but as there are no
vertical bluezones it is not clear how these should be used).

Glyph

A glyph is an image, often associated with one or several characters.
So the glyph used to draw "f" is associated with the character f, while
the glyph for the "fi" ligature is associated with both f and i. In simple
latin fonts the association is often one to one (there is exactly one
glyph for each character), while in more complex fonts or scripts there
may be several glyphs per character (In renaissance printing the letter
"s" had two glyphs associated with it, one, the long-s, was used initially
and medially, the other, the short-s, was used only at the end of
words). And in the ligatures one glyph is associated with two or more
characters.

Fonts are collections of glyphs with some form of mapping from
character to glyph.

7 1

Grid Fitting

Before T rueType glyphs are rasterized they go through a process
called grid fitting where a tiny program (associated with each glyph) is
run which moves the points on the glyph's outlines around until they fit
the pixel grid better.

Gothic

The German monks at the time of Gutenberg used a black-letter
writing style, and he copied their handwriting in his typefaces for
printing. Italian type designers (after printing spread south) sneered at
the style, preferring the type designs left by the Romans. As a term of
contempt they used the word gothic, the style of the goths who
helped destroy the roman empire.

Graphite tables

Graphite is an extension to T rueType which embeds several tables
into a font containing rules for contextual shaping, ligatures, reordering,
split glyphs, bidirectionality, stacking diacritics, complex positioning, etc.

This sounds rather like OpenType -- except that OpenType depends
on the text layout routines knowing a lot about the glyphs involved.
This means that OpenType fonts cannot be designed for a new
language or script without shipping a new version of the operating
system. Whereas Graphite tables contain all that hidden information.

Apple's Advanced Typography provides a better comparison, but
Graphite tables are supposed to be easier to build.

SIL International provides a free Graphite compiler .

Grotesque

See also sans-serif.

H

Han characters

The ideographic characters used in China, Japan and Korea (and, I
believe, in various other asian countries as well (Vietnam?)), all based
on the writing style that evolved in China.

Hangul

The Korean syllabary. The only syllabary (that I'm aware of anway)
based on an alphabet -- the letters of the alphabet never appear
alone, but only as groups of two or three making up a syllable.

Hanja

The Korean name for the Han characters

Hints

These are described in detail in the main manual. They help the
rasterizer to draw a glyph well at small pointsizes.

Hint Masks

At any given point on a contour hints may not conflict. However
different points in a glyph may need conflicting hints. So every now
and then a contour will change which hints are active. Each list of active
hints is called a hint mask.

Hiragana

One of the two Japanese syllabaries. Both Hiragana and Katakana have
the same sounds.

I

Ideographic character

A single character which represents a concept without spelling it out.
Generally used to mean Han (Chinese) characters.

Italic

A slanted style of a font, often used for emphasis.

Italic differs from Oblique in that the transformation from the plain to
the slanted form involves more than just skewing the letterforms.
Generally the lower-case a changes to a, the serifs on lower-case
letters like i (i) change, and the font generally gains a more flowing
feeling.

J

Jamo

The letters of the Korean alphabet. These are almost never seen
alone, generally appearing in groups of three as part of a Hangul
syllable. The Jamo are divided into three catagories (with considerable
overlap between the first and third), the choseong -- initial consonants,
the jungseong -- medial vowels, and the jongseong -- final consonants.
A syllable is composed by placing a choseong glyph in the upper left of
an em-square, a jungseong in the upper right, and optionally a
jongseong in the lower portion of the square.

K

72

Kanji

The Japanese name for the Han characters.

Katakana

One of the two (modern) Japanese syllabaries. Both Hiragana and
Katakana have the same sounds.

Kerning

When the default spacing between two glyphs is inappropriate the font
may include extra information to indicate that when a given glyph (say
"T ") is followed by another glyph (say "o") then the advance width of
the "T " should be adjusted by a certain amount to make for a more
pleasing display.

In the days of metal type, metal actually had to be shaved off the slug
of type to provide a snugger fit. In the image on the side, the "F" on
the left has had some metal removed so that a lower case letter could
snuggle closer to it.

Kern pair

A pair of glyphs for which kerning information has been specified.

Kerning by classes

The glyphs of the font are divided into classes of glyphs and there is a
large table which specifies kerning for every possible combination of
classes. Generally this will be smaller than the equivalent set of kerning
pairs because each class will usually contain several glyphs.

Knuth, Donald

A mathematician who got so fed up with bad typesetting back in the
1970 & 80s that he created his own font design system and
typographical layout program called, respectively, MetaFont and TeX.

L

Left side bearing

The horizontal distance from a glyph's origin to its leftmost extent.
This may be negative or positive.

Lemur

A monotypic genus of prosimian primates, now found only on
Madagascar but formally (about 50 million years ago) members of this
family were much more wide spread.

Ligature

A single glyph which is composed of two adjacent glyphs. A common
example in the latin script is the "fi" ligature which has a nicer feel to it
than the sequence.

Linespace

The distance between successive lines of type.

LGC

Latin, Greek, Cyrillic. These three alphabets have evolved side by side
over the last few thousand years. The letter forms are very similar
(and some letters are shared). Many concepts such as "lower case",
"italic" are applicable to these three alphabets and not to any others.
(OK, Armenian also has lower case letters).

M

Manyogana

An early Japanese script, ancestral to both hiragana and katakana.
Manyogana used kanji for their phontic sounds, and over the years
these kanji were simplified into hiragana and katahana.

Monospace

A font in which all glyphs have the same width. These are sometimes
called typewriter fonts.

Multi-layered fonts

(FontForge's own term) PostScript type3 fonts and SVG fonts allow for
more drawing possibilities than normal fonts. Normal fonts may only
be filled with a single color inherited from the graphics environment.
These two fonts may be filled with several different colors, stroked,
include images, have gradient fills, etc.. FontForge can be configured to
support these fonts (it does not do so by default because this takes
up more memory).

$ configure --with-type3
$ make
$ make install

Multiple Master Font

73

A multiple master font is a PostScript font schema which defines an
infinite number of related fonts. Multiple master fonts can vary along
several axes, for example you might have a multiple master which
defined both different weights and different widths of a font family, it
could be used to generate: Thin, Normal, Semi-Bold, Bold, Condensed,
Expanded, Bold-Condensed, etc.
Adobe is no longer developing this format. Apple has a format which
acheives the same effect but has not produced many examples.
FontForgesupports both.

N

Namelist

A mapping from unicode code point to glyph name.

Non-Zero Winding Number Fill rule

To determine if a pixel should be filled using this rule draw a line from
here to infinity (in any direction) and count the number of times
contours cross this line. If the contour crosses the line in a clockwise
direction add 1, of the contour crosses in a counter clockwise direction
subtract one. If the result is non-zero then fill the pixel. If it is zero
leave it blank. This method is used for rasterizing fonts by truetype
and older (before version 2) postscript.

See Also Even-Odd Fill Rule.

O

Ogham

The old Celtic inscription script.

OpenType

A type of font. It is an attempt to merge postscript and truetype
fonts into one specification.
An opentype font may contain either a truetype or a postscript font
inside it.

It contains many of the same data tables for information like
encodings that were present in truetype fonts.

Confusingly it is also used to mean the advanced typographic tables
that Adobe and MicroSoft (but not Apple) have added to T rueType.
These include things like contextual ligatures, contextual kerning, glyph
substitution, etc.

And MS Windows uses it to mean a font with a 'DSIG' (Digital Signature)
table.

OpenType Tables

Each opentype font contains a collection of tables each of which
contains a certain kind of information.

Oblique

A slanted style of a font, generally used for emphasis.

Oblique differs from Italic in that the transformation from the plain to
the slanted form involves a mathematical or mechanical skewing the
letterforms.

Overshoot

In order for the curved shape of the "O" to appear to be the same
height as the flat top of the "I" it tends to "overshoot" the cap-height
(or x-height), or undershoot the baseline by about 3% of the cap-
height (or x-height). For a triangular shape (such as "A") the overshoot
is even greater, perhaps 5%.

These guidelines are based on the way the eye works and the optical
illusions it generates and are taken from Peter Karow's Digital Formats
for Typefaces, p. 26).

The overshoot is also dependant on the point-size of a font, the
larger the point-size the smaller the overshoot should be. Generally
modern fonts will be used at multiple point-sizes, but in some font
families there are multiple faces for the different point-sizes, and in
such a case the overshoot will probably vary from face to face.

See also X-height, Cap-height, Ascender, Descender, Baseline

P

Panose

A system for describing fonts. See HP's PANOSE classification metrics
guide (http://www.panose.com/ProductsServices/pan1.aspx). There is
also an extension called Panose
2 (http://www.w3.org/Fonts/Panose/pan2.html).

FontForge only knows about the classification scheme for Latin fonts.
Other schemes exist for other scripts.

PfaEdit

This was the early name for FontForge. The original conception was
that it would only edit type1 ASCII fonts (hence the name), it quickly
metamorphosed beyond that point, but it took me three years to
rename it.

Phantom points

74

http://www.panose.com/ProductsServices/pan1.aspx
http://www.w3.org/Fonts/Panose/pan2.html

In a truetype font there are a few points added to each glyph which
are not specified by the contours that make up the glyph. These are
called phantom points. One of these points represents the left side
bearing, and the other the advance width of the glyph. T ruetype
instructions (hints) are allowed to move these points around just as
any other points may be moved -- thus changing the left-side-bearing
or the advance width. Early versions of T rueType supplied just these
two phantoms, more recent versions also supply a phantom for the
top sidebearing and a phantom for the vertical advance width.

Pica

A unit of length defined (in the US at least) to be 35/83cm (or
approximately 1/6th of an inch). This was used for measuring the
length of lines of text (as "30 picas and 4 points long"), but not for
measuring font heights.

In Renaissance typography, before there were points, sizes of type had
names, and "pica" was used in this context. As: "Great Canon", "Double
Pica", "Great Primer", "English", "Pica", "Primer", "Small Pica", "Brevier",
"Nonpareil" and "Pearl" (each name representing a progressively
smaller size of type) and See Caslon's type specimen sheet on
Wikipedia (http://en.wikipedia.org/wiki/Alphabet).

Pica point

The Anglo-American point. With 72.27 points per inch (2.85pt /mm).

Point

A point is a unit of measurement. There were three (at least) different
definitions for "point" in common usage before the advent of
computers. The one in use in the Anglo-Saxon printing world was the
"pica point" with 72.27 points per inch (2.85pt /mm), while the one
used in continental Europe was the didot point with 62 2/3 points per
23.566mm (2.66pt/mm or 67 .54pt/inch) and the French sometimes
used the Mediaan point (72.78 points per inch, 2.86pt/mm).

The didiot and pica points were so arranged that text at a given
point-size would have approximately the same cap-height in both
systems, the didot point would have extra white-space above the
capitals to contain the accents present in most non-English Latin based
scripts.

This has the interesting side effect that a font designed for European
usage should have a smaller proportion of the vertical em given over
to the text body. I believe that computer fonts tend to ignore this, so
presumably european printers now set with more leading.

As far as I can tell, computers tend to work in approximations to pica
points (but this may be because I am in the US), PostScript uses a unit
of 1/72nd of an inch.

Originally fonts were not described by point size, but by name. It was
not until the 1730s that Pierre Fournier that created the point system
for specifying font heights. This was later improved upon by François
Didiot (whence the name of the point). In 1878 the Chicago Type
Foundry first used a point system in the US. In 1886 the US point was
standardized -- the pica was defined to be 35/83cm, and the pica
point defined to be 1/12th of that.

Point Size

In traditional typography a 10pt font was one where the block of metal
for each glyph was 10 points high. The point size of a font is the
unleaded baseline to baseline distance.

Point of inflection

A point on a curve where it changes from being concave downwards
to concave upwards (or vice versa). Or in mathematical terms (for
continuous curves) where d2 y/dx2=0 or infinity.
Cubic splines may contain inflection points, quadratic splines may not.

PostScript

PostScript is a page-layout language used by many printers. The
language contains the specifications of several different font formats.
The main (FontForge) manual has a section describing how PostScript
differs from T rueType.

Type 1: This is the old standard for PostScript fonts. Such a font
generally has the extension .pfb (or .pfa). A type 1 font is limited
to a one byte encoding (ie. only 256 glyphs may be encoded).
Type 2/CFF: This is the format used within OpenType fonts. It is
almost the same as Type 1, but has a few extensions and a more
compact format. It is usually inside a CFF wrapper, which is
usually inside an OpenType font. The CFF font format again only
allows a 1 byte encoding, but the OpenType wrapper extends
this to provide more complex encoding types.
Type 3: This format allows full postscript within the font, but it
means that no hints are allowed, so these fonts will not look as
nice at small point-sizes. Also most (screen) rasterizers are
incapable of dealing with them. A type 3 font is limited to a one
byte encoding (ie. only 256 glyphs may be encoded).
Type 0: This format is used for collecting many sub-fonts (of
Type 1, 2 or 3) into one big font with a multi-byte encoding, and
was used for CJK or Unicode fonts.
Type 42: A T rueType font wrapped up in PostScript. Sort of the
opposite from OpenType.
CID: This format is used for CJK fonts with large numbers of
glyphs. The glyphs themselves are specified either as type1 or
type2 glyph format. The CID font itself has no encoding, just a
mapping from CID (a number) to glyph. An set of external CMAP
files are used to provide appropriate encodings as needed.

Python

75

http://en.wikipedia.org/wiki/Alphabet

A computer programming language that emphasizes code readability.

R

Reference

A reference is a way of storing the outlines of one glyph in another
(for example in accented glyphs). Sometimes called a component.

Right side bearing

The horizontal distance from a glyph's rightmost extent to the glyph's
advance width. This may be positive or negative.

S

Sans Serif

See Serif.

Script

A script is a character set and associated rules for putting characters
together. Latin, arabic, katakana and hanja are all scripts.

Serif

Back two thousand years ago when the Romans were carving their
letters on stone monuments, they discovered that they could reduce
the chance of the stone cracking by adding fine lines at the
terminations of the main stems of a glyph.

These fine lines were called serifs, and came to have an esthetic
appeal of their own. Early type designers added them to their fonts
for esthetic rather than functional reasons.

At the end of the nineteenth and beginning of the twentieth centuries,
type-designers started designing fonts without serifs. These were
initially called grotesques because their form appeared so strange,
they are now generally called sans-serif.

Other writing systems (Hebrew for one) have their own serifs. Hebrew
serifs are rather different from latin (cyrillic, greek) serifs and I don't
know their history. Hebrew serifs only occur at the top of a glyph.

SFD

SplineFont DataBase. These are FontForge's own personal font
representation. The files are ASCII and vaguely readable, the format is
described here. As of 14 May 2008 the format has been registered
with IANA for a MIME type: application/vnd.font-fontforge-sfd.
Other people use sfd too. (Unfortunately)

Tops-10, on the Digital PDP-10 used sfd to mean "Sub File
Directory". Tops-10 made a distinction between top-level (home)
directories, called "user file directories", and sub-directories.
TeX uses it to mean "Sub Font Definition" where a TeX sfd file
contains information on how to break a big CJK or Unicode font
up into small sub-fonts, each with a 1 byte encoding which TeX
(or older versions of TeX) needed.

SFNT

The name for the generic font format which contains T rueType,
OpenType, Apple's bitmap only, X11's bitmap only, obsolete 'typ1' fonts
and Adobe's SING fonts (and no doubt others). The SFNT format
describes how font tables should be laid out within a file. Each of the
above formats follow this general idea but include more specific
requirements (such as what tables are needed, and the format of each
table).

SIP

Supplementary Ideographic Plane (0x20000-0x2FFFF) of unicode. Used
for rare Han characters (most are no longer in common use) See Also

BMP: Basic Multilingual Plane (0x00000-0x0FFFF)
SMP: Supplementary Multilingual Plane (0x10000-0x1FFFF)
SSP: Supplementary Special-purpose Plane (0xE0000-0xEFFFF)

SMP

Supplementary Multilingual Plane (0x10000-0x1FFFF) of unicode. Used
for ancient and artificial alphabets and syllabaries -- like Linear B,
Gothic, and Shavian. See Also

BMP: Basic Multilingual Plane (0x00000-0x0FFFF)
SIP: Supplementary Ideographic Plane (0x20000-0x2FFFF)
SSP: Supplementary Special-purpose Plane (0xE0000-0xEFFFF)

Spline

A curved line segment. The splines used in FontForge are all second or
third order Bézier splines (quadratic or cubic), and Raph Levien's
clothoid splines.

SSP

Supplementary Special-purpose Plane (0xE0000-0xEFFFF) of unicode.
Not used for much of anything. See Also

BMP: Basic Multilingual Plane (0x00000-0x0FFFF)
SMP: Supplementary Multilingual Plane (0x10000-0x1FFFF)
SIP: Supplementary Ideographic Plane (0x20000-0x2FFFF)

State machine

76

A state machine is like a very simple little program, they are used on
the mac for performing contextual substitutions and kerning. The
state machine dialog is reachable from Element->Font Info->Lookups.

The "state machine" consists of a table of states, each state in turn
consists of a series of potential transitions (to the same or different
states) depending on the input. In state machines within fonts, the
machine starts out in a special state called the start state, and reads
the glyph stream of the text. Each individual glyph will cause a state
transition to occur. As these transitions occur the machine may also
specify changes to the glyph stream (conditional substitutions or
kerning).

Stem

A stem is the part of the letterwhich is verical. The I and l are all stem
except for serifs. The H consists of two stems and a crossbar. Other
glyphs with stems include B b F f k k P p R r 1 and 4.

Strike

A particular instance of a font. Most commonly a bitmap strike is a
particular pixelsize of a font.

Style

There are various conventional variants of a font. In probably any
writing system the thickness of the stems of the glyphs may be varied,
this is called the weight of a font. Common weights are normal and
bold.

In LGC alphabets an italic (or oblique) style has arisen and is used for
emphasis.

Fonts are often compressed into a condensed style, or expanded out
into an extended style.

Various other styles are in occasional use: underline, overstrike, outline,
shadow.

SVG

Scalable Vector Graphics. An XML format used for drawing vector
images. It includes a font format.

Syllabary

A syllabary is a phonetic writing system like an alphabet. Unlike an
alphabet the sound-unit which is written is a syllable rather than a
phoneme. In Japanese KataKana the sound "ka" is represented by one
glyph. Syllabaries tend to be bigger than alphabets (Japanese KataKana
requires about 60 different characters, while the Korean Hangul
requires tens of thousands).

See Also: abjad, abugida, alphabet and the relevant Wikipedia
article (http://en.wikipedia.org/wiki/S_yllabary).

T

Terminal

The terminal of a glyph is the part where the stroke ends. The Top of
the f has a terminal. The s has two terminals. When a glyph has serifs
the serifs are considered diffrent from the serifs. Because the bottom
of the f would have a serif if it is in a serif style bottom is not
considerered a terminal. The bottom of the j and y are however
considered terminals. Similarly the 3 has two terminals one at the top
and one the bottom. The middle is considered to be a join rather than
a terminal. The clissification of thse parts is perhaps more determined
by convention than by a strict logic.

TeX

A typesetting package.

Thorn

The germanic letter "þ" used for the unvoiced (English) "th" sound (as
in the word "thorn"), I believe this is approximately the same sound
value as Greek Theta. Currently a corrupt version of this glyph
survives as "ye" for "the". See also Eth.

True Type

A type of font invented by Apple and shared with MicroSoft. It
specifies outlines with second degree (quadratic) Bézier curves,
contains innovative hinting controls, and an expandable series of tables
for containing whatever additional information is deemed important to
the font.
Apple and Adobe/MicroSoft have expanded these tables in different
ways to include for advanced typographic features needed for non-
latin scripts (or for complex latin scripts). See Apple Advanced
Typography and OpenType.

TrueType Tables

Each truetype font contains a collection of tables each of which
contains a certain kind of information.

Type 1

A type of PostScript font.

Type 2

A type of PostScript font, used within OpenType font wrappers.

7 7

http://en.wikipedia.org/wiki/S_yllabary

Type 3

A very general type of PostScript font.

Type 0

A type of PostScript font.

Type High

In the days of metal type this was the height of the piece of metal --
the distance from the printing surface to the platform on which it
rested.

Typewriter

See Monospace.

U

Unicode

A character set/encoding which tries to contain all the characters
currently used in the world, and many historical ones as well. See the
Unicode consortium (http://www.unicode.org/).

BMP: Basic Multilingual Plane (0x00000-0x0FFFF)
SMP: Supplementary Multilingual Plane (0x10000-0x1FFFF)
SIP: Supplementary Ideographic Plane (0x20000-0x2FFFF)
SSP: Supplementary Special-purpose Plane (0xE0000-
0xEFFFF)�More info.

Undershoot

See Overshoot.

UniqueID

This is a field in a PostScript font, it was formerly used as a
mechanism for identifying fonts uniquely, then Adobe decided it was
not sufficient and created the XUID (extended Unique ID) field. Adobe
has now decided that both are unneeded.

There is a very similar field in the T rueType 'name' table.

UseMyMetrics

This is a truetype concept which forces the width of an composite
glyph (for example an accented letter) to be the same as the width of
one of its components (for example the base letter being accented).

V

Vertical Advance Width

CJK text is often written vertically (and sometimes horizontally), so
each CJK glyph has a vertical advance as well as a horizontal advance.

W

Weight

The weight of a font is how thick (dark) the stems of the glyphs are.
T raditionally weight is named, but recently numbers have been applied
to weights.

Thin
100

Extra-Light
200

Light
300

Normal
400

Medium
500

Demi-Bold
600

Bold
700

Heavy
800

Black
900

Nord

Ultra

White space

The white space of the type design includes the space between lines
of text, the space between the letters, the word space and the spaces
inside the letters. It is a broad and encompassing term.

Width

78

http://www.unicode.org/

This is a slightly ambiguous term and is sometimes used to mean the
advance width (the distance from the start of this glyph to the start
of the next glyph), and sometimes used to mean the distance from the
left side bearing to the right side bearing.

X

X-height

The height of a lower case letter above the base line (with a flat top
like "x" or "z" or "v" as opposed to one with a curved top like "o" or
one with an ascender like "l") .

See also Cap-height, Ascender, Descender, Overshoot, Baseline.

XUID

Extended Unique ID in a PostScript font. Now somewhat obsolete. See
Unique ID.

79

23. FURTHER READING

Detail in Typography (Paperback)

Jost Hochuli (Author)

ISBN: 9780907259343

Adrian Frutiger - Typefaces: The Complete Works

Heidrun Osterer, Philipp Stamm, Swiss Foundation Type and
Typography (Authors)

ISBN: 9783764385811

Printing Types: Their History, Forms, and Use: A Study in Survivals
(with ILLUSTRAT IONS)

D. B Updike, Daniel Berkeley (Authors)

Creative Characters Format: Flexibound

Jan Middendorp (Editor)

ISBN: 9789063692247

Now Read This: The Microsoft Cleartype collection

John D. Berry (Author)

The Stroke: Theory of Writing (Paperback)

Gerrit Noordzij (Author)

ISBN: 9780907259305

Shaping Text: Type, Typography and the Reader

Jan Middendorp (Author)

ISBN: 9063692234

Thinking with Type: A Critical Guide for Designers, Writers, Editors, &
Students (Design Briefs)

Ellen Lupton (Author)

ISBN: 9781568984483

LETTERS OF CREDIT : A view of type design

T racy, Walter (Author)

ISBN: 0879236361 / 0-87923-636-1

The Elements Of Typographic Style: Version 3.1

Bringhurst, Robert (Author)

ISBN: 0881792063 / 0-88179-206-3

Type: The Secret History of Letters

Simon Loxley (Author)

ISBN: 1845110285

Type Designs

AF Johnson (Author)

Typography: Macro & Microaesthetics

Willy Kunz (Author)

ISBN: 3721203488

Fonts and encodings

Yannis Haralambous (Author), P Scott Horne (T ranslator)

ISBN-10: 0596102429 | ISBN-13: 978-0596102425

The Unicode Standard, Version 5.0

80

The Unicode Consortium (Author)

ISBN-10: 0321480910 | ISBN-13: 978-0321480910

81

	FONTFORGE
	1. INTRODUCTION
	2. WHAT IS A FONT?
	Construction
	Proportion of X-height to Cap-height
	Ascender Height
	Descender depth
	WIDTH

	3. TRUSTING YOUR EYES
	EXAMPLES OF ILLUSIONS
	YOU ARE FULLY QUALIFIED TO CORRECT FOR THESE ILLUSIONS
	TEST FOR FITNESS OF PURPOSE

	4. PLANNING YOUR PROJECT
	GLYPH COVERAGE
	MULTI-STYLE FAMILY WORKFLOW

	5. INSTALLING FONTFORGE
	FROM YOUR LINUX DISTRIBUTION ON FEDORA
	DEBIAN / UBUNTU
	FROM SUPPLIED BINARIES
	FROM GITHUB
	SOME COMMON ISSUES WHILE BUILDING

	6. USING THE FONTFORGE DRAWING TOOLS
	FAMILIARIZE YOURSELF WITH THE DRAWING TOOLS
	BASIC DRAWING
	KEEP DRAWING

	7. DRAWING WITH SPIRO
	The Spiro toolset
	Draw an S with Spiro

	8. CREATING 'O' AND 'N'
	UNDERHANGS AND OVERSHOOTS
	DESIGN THE LOWERCASE 'O'
	DESIGN THE LOWERCASE 'N'

	9. WORD SPACE
	10. CREATING YOUR TYPE'S DNA
	BUILD A TEST TEXT

	11. CAPITAL LETTERS
	12. LINE SPACING
	THINK ABOUT LINE SPACE INTENTIONALLY
	EXPERIMENT WITH YOUR FONT'S LINE SPACING IN FONTFORGE

	13. PUNCTUATION AND SYMBOLS
	SIMPLE PUNCTUATION GLYPHS
	EXCLAMATION MARK AND QUESTION MARK
	ADDITIONAL SYMBOLS

	14. COMPLETING THE LOWER CASE
	PROCEEDING WITH THE OTHER LOWER CASE LETTERS

	15. NUMERALS
	LINING STYLE NUMERALS
	RANGING OR OLD STYLE NUMERALS
	HYBRID STYLE NUMERALS

	16. BOLD
	FONT INTERPOLATION

	17. ITALIC
	SLANT
	ITALIC CONSTRUCTION
	MIXING VARIABLES

	18. SPACING, METRICS, AND KERNING
	BASIC FUNCTIONS OF THE METRICS WINDOW
	GENERAL PRINCIPLES
	METRICS MENU COMMANDS FOR EDITING METRICS
	A BASIC APPROACH TO SPACING
	UPPERCASE CHARACTERS
	KERNING
	FONTFORGE'S METRICS MENU
	ADJUSTING KERNING VALUES WITH THE KEYBOARD
	KERNING INDIVIDUAL PAIRS
	KERNING WITH CLASSES
	MANUAL KERNING

	19. MAKING SURE YOUR FONT WORKS: VALIDATION
	FIND PROBLEMS
	VALIDATE FONT
	FIX PROBLEMS AS YOU EDIT

	20. THE FINAL OUTPUT: GENERATING FONT FILES
	QUICK AND DIRTY GENERATION FOR TESTING
	GENERATING FOR FINAL RELEASE

	21. WHEN THINGS GO WRONG WITH FONTFORGE ITSELF
	USING THE GNU DEBUGGER TO REPORT CRASHES

	22. GLOSSARY
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	23. FURTHER READING

