
KDE

Published : 2011-10-21
License : None

1

KDE FROM A DEVELOPER'S
VIEWPOINT
1. DO YOU NEED THIS BOOK?
2. THE KDE PHILOSOPHY
3. HOW TO GET HELP

2

1. DO YOU NEED THIS BOOK?

You should read this book if you want to do any development for KDE. We're using the term
development very broadly to cover anything that can lead to a change in source code. This
includes:

Submitting a bug fix
Writing a new application powered by KDE technology
Contributing to an existing project
Adding functionality to KDE development libraries

In this book we'll give you the basics you need to be a productive developer. We'll explain the
tools you should install, show you how to read the documentation (and write your own, once
you've created new functionality!) and how to get help in other ways. We'll introduce you to the
KDE community, which is key to understanding KDE because we are a free, open source
project.

Regular users of the software do NOT need this book! However, they might find it interesting
to help understand how the complex and richly featured software they use has come into
being.

3

2. THE KDE PHILOSOPHY

KDE's success is based on a world-view that we've found to be both practical and motivating.
Elements of this development philosophy include-

Using available tools rather than re-inventing existing ones: Many of the basics you need
to do your work are already part of KDE, such as the core libraries or Kparts, and are quite
mature. So check out all available resources before trying to solve your own problem.

When making a suggestion, change we should.. to I will..: Grandiose plans are useless
unless you are willing to put in the work to make them happen. You will find help once you
start!

Improve code iteratively: Don't let the perfect be the enemy of the good. T ry a
small solution, get it to work, and improve it through testing and refactoring to produce an
excellent patch.

THE KDE COMMUNITY

The KDE development platform is created and maintained by an international team that
cooperates on the development and distribution of free, open source software for desktop
and portable computing. Our community has developed a wide variety of applications for
communication, work, education, and entertainment. We have a strong focus on finding
solutions to old and new problems, creating an open atmosphere for experimentation.

As a community, we value all contributions, and can use all member talents, including artwork,
graphics, design, communication, translations, documentation, testing, bug-reporting and bug-
hunting, system administration, and coding.

WHAT MAKES KDE SO EXCITING?

The best thing about KDE is our amazing community! We welcome new members, offering help
and allowing people to experiment, learn and grow. This book is a part of that mission.

Our products are used by millions of home and office workers, and are being deployed in
schools around the world. Brazil alone has over 50 million school children using KDE-based
software to browse, learn and communicate! As a complement to Google Summer of Code, we
run our own Season of KDE, where people take on the responsibility of working on a project
intensively for the summer, and get a cool T -shirt at the end, in thanks. In 2011, we had 100
proposals! What an amazing community.

IS IT DIFFICULT TO GET INVOLVED?

Not at all! Every day, more and more people join our ever-growing family of contributors. KDE
has a strong infrastructure of web resources, forums, mailing-lists, IRC, and other
communication services. We can provide feedback on your code and other contributions with
the goal of helping you learn. Of course, a proactive attitude and a friendly personality helps.

4

THE KDE CODE OF CONDUCT

When communicating in official KDE channels please observe the KDE Code of Conduct.

Our Code of Conduct presents a summary of the shared values and common sense thinking in
our community. The basic social ingredients that hold our project together include:

Be considerate
Be respectful
Be collaborative
Be pragmatic
Support others in the community
Get support from others in the community

The Code of Conduct can be found here : http://www.kde.org/code-of-conduct/

THE VALUE OF BEING FREE AND OPEN SOURCE

Our code can be copied, changed, and redistributed by anybody. This means you can be
confident that the software will continue to be available even if the original developers move
on. It also means that development is out in the open, with comments from anyone in the
world who is interested. Finally, open source code makes it easier for a developer to find and
fix problems. One of the practical effects of free software is that wonderful communities tend
to develop around code. We have created all this within KDE.

The KDE community is involved with the larger free and open source movement. We
cooperate with the GNOME community in FreeDesktop.org and the bi-annual Desktop Summit.
We've been a leading participant in Google Summer of Code and Google Code-In since they
began, and we regularly sprint with members of other FOSS groups, and participate in open
standard efforts. We are supported in these efforts by the KDE e.V., who issue quarterly
reports of their activity at http://ev.kde.org/reports/.

5

6

3. HOW TO GET HELP

Of course, we hope our book is helpful to you! But inevitably, you will come up with questions
or need help with a problem. The KDE community is helpful and friendly, so pick the most
appropriate method in this chapter and ask away. Unless you have a specific need to talk to
one particular person, please address the whole list or channel.

KDE MAILING LISTS

The KDE mailing lists are one of the main communication channels in the KDE Community. All
developers will find the KDE-devel list useful. In addition, those working on the core of the KDE
Software Compilation (SC) will want to subscribe to KDE-Core-devel. Those working on
applications or KDE projects should subscribe to the project mailing list. The full spectrum of
KDE lists can be found at https://mail.kde.org/mailman/listinfo.

Both help and information are available on the lists. However, if you need help quickly, IRC may
be more useful.

KDE ON IRC

IRC is Internet Relay Chat, a text-only, real-time communication tool. There are a variety of IRC
clients available from KDE, such as Konversation, Quassel, and Kvirc.

Almost all KDE developers show up or idle on KDE IRC channels on Freenode (irc.freenode.net).
IRC is the best way to get quick help from the KDE developers. As a developer, you will want
to be in #kde, #kde-devel and your project channel or channels. You'll find that the more time
you spend in IRC, the more you will get to know your fellow developers and our KDE users.
Life-long friendships have started in KDE channels. Help is available about the services such as
chanserv and nickserv by using the commands /msg chanserv help and /msg nickserv help.
More about using Freenode is available here: http://freenode.net/using_the_network.shtml.

Userbase keeps a list of channels current at http://userbase.kde.org/IRC_Channels, and you can
also use the IRC command /msg alis list $searchterm, where $searchterm is the subject in which
you are interested.

When asking questions, please bear these tips in mind:

7

https://mail.kde.org/mailman/listinfo
http://freenode.net/using_the_network.shtml
http://userbase.kde.org/IRC_Channels

If you have a question, just ask it. There's no need to ask first whether you can ask a
question.

Be prepared to wait for an answer. Even though IRC is a more real-time mode of
communication than mailing lists, there may not be anyone available to answer your
question immediately. In general, if you don't receive a response on IRC in about an hour,
it's best to send an email.

Don't ask your question more than once. Even though the channel is active, the right
person may not be available to provide an answer. The one exception to this rule is that,
if you are told to wait for a certain person to come online, ask again when you see him
or her come online. Again, if you don't receive a response to your question in about an
hour, it's probably best to send an email.

Pasting large amounts of text is considered bad etiquette, so use a pastebin. KDE's
pastebin is at http://paste.kde.org

KDE COMMUNITY PROBLEMS

If you encounter bad behavior on a list or in a channel, please contact the list owners or one of
the ops. The list owner address is $listname-owner@kde.org, where $listname is the name of
the list. Ops in a channel can be identified by issuing this command: /msg chanserv access
#channelname list. Ops will have a "+" next to their nicks. For general KDE community help,
please write to the Community Working Group at community-wg@kde.org, or stop by our IRC
channel at #kde-cwg.

8

FIRST STEPS
4. CHOOSING A PROJECT
5. THE QT FRAMEWORK
6. USING GIT FOR KDE DEVELOPMENT
7. CHOOSING AN IDE
8. KDE APIS
9. DOCUMENTATION

9

4. CHOOSING A PROJECT

When you come to KDE as a developer, you may already have a favorite project and know
how you want to contribute. But it's worth looking over the various projects listed in this
chapter, to find out all the ways you may be able to help. And even if you're really only
interested in one project, it's useful to know what others are active because your work may
interact with them.

FRAMEWORKS

These are general components underlying the applications and other visible parts of KDE. The
team is working hard to make the libraries modular, clarify the dependencies, simplify, and
increase the quality and stability.

KDE Core Libraries (kdelibs)

Critical functions needed across the KDE platform

Widgets & Classes

Widgets and classes that are not in kdelibs but that are widely useful

D-Bus Web Service Proxy

A project to connect Web Services to the D-Bus notification framework on Linux

kdesu

Tools for gaining superuser privileges on different backends

KDE WebKit

A project integrating the QtWebKit browser engine into the KDE Software
Compilation

KioFuse

This inserts KIO(K Input Output) resources (remote, archived, or compressed files)
into the root filesystem hierarchy

Nepomuk

Basic desktop operations for annotation, indexing, search, and linking

Network Management

An applet and configuration tool for Solid Networking and KNetworkManager

Oxygen

Artwork for the KDE SC

Solid

The KDE SC hardware library

Telepathy

A communications framework for Instant Messaging, VoIP, and Collaboration

Akonadi

10

 An extensible cross-desktop storage service for PIM data and meta data

Related projects

Non-central projects that are related to KDE technology in various ways, such as
dependencies or build tools

PROGRAMS

This is a small cutout of the applications created and maintained by KDE developers.

Amarok

Amarok’s tagline is Rediscover Your Music, and its development is based around this
ideology. Amarok’s core features such as the unique context browser, integrated
Wikipedia lookup and lyrics download help users to find new music, and to learn more
about the music they have.

Digikam

Photo management software

Gwenview

KDE image viewer

K3b

An optical disc writer

KDevelop4

Integrated Development Environment (IDE) for KDE SC

KWin

The KDE Window Manager

Marble

A visually appealing globe program

Okular

A unified document viewer

Rekonq

A lightweight web browser powered by WebKit and KDE SC

System Settings

The System Settings configuration tool.

SuperKaramba

A tool for creating attractive widgets and other interactive elements

SUITES

These projects group many related applications. The key concept is that data created in one
part of the suite can be easily used by another application in the suite.

11

KDE Education Project

Educational software for KDE

KDE Finance

Financial applications

KDE Games

Desktop games for KDE

Kdetoys

A set of amusing diversions

KDE Utilities

A variety of tools to run on the desktop

KOffice and Calligra

Office suites based on KDE libraries

PIM

Personal information management tools

Plasma

Programs for the quick and easy creation of widgets, including interactive
application launchers, and window and task managers

PLATFORMS

These projects ensure that KDE works on various operating systems.

KDE on Mac OS X

KDE libraries and applications for Mac OS X

KDE on Windows

KDE libraries and applications for Microsoft Windows

KDE on FreeBSD

KDE libraries and applications on FreeBSD and other BSD versions

Plasma Active

A project for porting KDE technology to mobile devices

WORKING WITH THE ORGANISATION

These projects deal with the people and processes that make KDE possible.

KDE Release Team

Schedules and coordinates releases

KDE Documentation Project

12

Creates and maintains KDE documentation

kde.org

Provides information around the *.kde.org websites

KDE Promotion

Promotes KDE and organizes conferences

Partner Program

Supports KDE partner Independent Software Vendors (ISVs)

KDE Usability project

Applies usability principles and practices to the K Desktop Environment

KDE Accessibility project

Builds on Qt features for making interactive environments more accessible to the
disabled or others with special needs

KDE BugSquad

Keeps track of incoming bugs in KDE software, and goes through old bugs.

Summer of Code Projects

Google Summer of Code projects related to KDE

English Breakfast Network (EBN)

Provides tools dedicated to KDE Code Quality, including KDE API Documentation
Validation, User Documentation Validation, Source Code Checking, etc.

KDE Research

Supports everyone who is interested in contributing to (funded) research projects
with(in) the KDE community.

 If you are still confused which project you want to work with then try hanging out with KDE
SC developers on IRC to become familiar with the project.

13

5. THE QT FRAMEWORK

To start developing on the KDE Development Platform you will need to get familiar with the
Qt framework, which is one of building blocks of KDE development.

Qt (pronounced officially as cute) is a cross-platform application framework based on C++,
that is widely used for developing application software with a graphical user interface (GUI).
Thus, it is largely a widget toolkit, but is also used for developing non-GUI programs such as
command-line tools and consoles for servers.

Besides the KDE Development Platform, Qt is most notably used in Autodesk Maya, Adobe
Photoshop Elements, OPIE, Skype, VLC media player, VirtualBox, and Mathematica, and by the
European Space Agency, DreamWorks, Google, HP, Lucasfilm, Panasonic, Philips, Samsung,
Siemens, Volvo, and Walt Disney Animation Studios.

ADVANTAGES OF QT

Writing code once to target multiple platforms

Qt allows you to write advanced applications and UIs that you can deploy across different
desktops and embedded operating systems without rewriting the source code, saving time and
development cost.

Creating amazing user experiences

Whether you prefer C++ or JavaScript, Qt provides the building blocks for modern, interactive
interfaces: a broad set of customizable widgets, graphics canvas, style engines, and more. You
can incorporate 3D graphics, multimedia audio or video, visual effects, and animations to set
your application apart from the competition.

Doing more (and faster!) with less

Qt is fast to learn and to use, particularly when used together with the new Qt Creator cross-
platform IDE. And Qt's modular class library provides much of the necessary infrastructure for
interactive applications.

Blending web and native code in a single application

Qt's integration with the WebKit web rendering engine means that you can quickly incorporate
content and services from the Web into your native application, and can use the web
environment to deliver your services and functionality.

To learn how to use Qt, we recommend the tutorials here:

 http://doc.qt.nokia.com/

14

http://doc.qt.nokia.com/

6. USING GIT FOR KDE DEVELOPMENT

Git is a free and open source version control system designed to handle everything from small
to very large projects with speed and efficiency. It provides lots of tools for figuring out where
you have gone as you edit files, as well as merging your changes with those made by other
developers.

You can find more about git (and download it if necessary) at http://git-scm.com.

GIT BASICS

There are several levels at which your changes can reside in git. You need to go through all the
steps carefully in order to save changes correctly. A typical sequence of git activities starts
with cloning a remote repository. Now you have a complete copy of what the original
developer has. Then you should do the following:

1. Create and edit files.
2. Run git add to tell git about any new files you have created or files that you have just

edited. Files with changes are in an intermediate state called a staging area, but not in
any repository yet.

3. Run git commit to save your changes in your own local repository.

We'll show examples of all this later in the chapter.

Instead of having to remember and type in the different full git addresses for pulling and
pushing, we recommend you manually add the following to your Git User Configuration
(~/.gitconfig):

[url "git://anongit.kde.org/"]
 insteadOf = kde:
[url "git@git.kde.org:"]
 pushInsteadOf = kde:

CLONING REPOSITORIES

After setting up your ~/.gitconfig as shown in the previous section, you need to clone the
source repositories using the following command:

git clone kde:project_name

where project_name is the name of the project that you want to contribute to. For instance, to
submit a patch to kdelibs, start with the command:

git clone kde:kdelibs

PULLING CHANGES

If you already have a git repository that you need to update with new changes from the
original source, run the following:

git pull

WORKING WITH BRANCHES

Git is a very powerful revision control system that supports the concept of branches. In order
to develop a new feature for a KDE Development Platform Project, it's best to use a separate
branch for feature development. You can check out a new branch using the following
command:

git checkout -b feature_name

for example:

git checkout -b myFeature

15

Later on you can switch between multiple branches using the git checkout command:

git checkout myFeature

Every git project has a branch called master that the owners of the repository consider the
main branch. Usually, nothing gets added to this branch until it is tested in a variety of
environments and the project leaders are sure it's both robust and useful.

Tracking Remote Branches

There are two types of branches in git, local and remote. Remote branches are branches that
exist in the remote repository. You can also track remote branches using the following
command:

git checkout --track remote_repository:remote_branch

For instance, to checkout the KDE 4.7 branch, use:

git checkout --track origin:KDE/4.7

COMMITTING YOUR WORK

Before pushing anything to the KDE codebase, you need a KDE identity and a developer
account. Please visit http://identity.kde.org/ to register your account. Your account name will
almost always be your surname; do not attempt to get around this rule. Developers with a lot
of experience can get accounts with commit rights, but that is outside the scope of this book.

In order to generate a diff of your changes and review them, run the following:

git diff

You can pipe this output into a patch using the following:

git diff > my_patch.patch

In order to commit your work, you first need to add the files you changed to the staging area
using the following command:

git add fileName1 fileName2

In order to commit your changes to your local repository, use the following command:

git commit

This opens up a text editor where you can type a commit message that describes your
changes.

SUBMITTING YOUR CHANGES INTO THE MAIN TREE

You can submit your patches to the KDE Review Board at https://git.reviewboard.kde.org/. Log
in using your KDE Identity account and submit a patch to a project there.

You can also directly send patches to review board using post review. The procedure is
outlined at:

http://community.kde.org/Sysadmin/GitKdeOrgManual#Using_Review_Board_and_post-
review

TROUBLESHOOTING

For any issues related to git and the KDE Development Platform, you can seek help in one of
the following channels on irc.freenode.net.

#kde-sysadmin
#kde-git

You can read more about KDE platform development using git
at http://techbase.kde.org/Development/Git.

16

https://git.reviewboard.kde.org
http://community.kde.org/Sysadmin/GitKdeOrgManual#Using_Review_Board_and_post-review
http://techbase.kde.org/Development/Git

7. CHOOSING AN IDE

An integrated development environment (IDE) allows you to do project management, testing,
and other activities in a convenient way alongside your coding. We recommend that you install
one of the following IDEs and do your KDE development work within it.

We recommend QtCreator for its ease of use and features, especially its built-in text editor.
But it's nice to know, if you're familiar with Eclipse already, that you can use that for KDE
development too.

QTCREATOR

QtCreator is an integrated, cross-platform IDE for C++ and JavaScript that is part of the
Qt SDK. It includes a visual debugger and a designer tool for GUI layout and forms. The
editor's features include syntax highlighting and auto-completion. QtCreator uses the GNU C++
compiler and related tools. On Windows it can use MinGW or MSVC with the default install, and
cdb when compiled from source.

You can find out more about using QtCreator with the KDE development platform at:

http://techbase.kde.org/Development/Tutorials/Using_Qt_Creator

KDEVELOP

17

KDevelop is a free, open source IDE (Integrated Development Environment) created as part of
the KDE development project to support development on C/C++ and other languages on
Microsoft Windows, Mac OS X, Linux, Solaris and FreeBSD. It is feature-full and can be extended
through plugins. It is based on KDevPlatform and the KDE development platform and Qt
libraries and has been under development since 1998.

You can find out more about KDevelop at:

http://userbase.kde.org/KDevelop4/Manual

ECLIPSE

Eclipse is a popular open source IDE. It is used primarily for programming in Java, but supports
a number of other languages, including C++, with the appropriate plug-in modules.

You can find out more about using Eclipse with the KDE development platform at:

http://techbase.kde.org/Development/Tools/Eclipse

18

8. KDE APIS

An Application Programming Interface (API) is a set of functions exposed by a program or
library that can be invoked by other programmers. An API greatly extends a program by
allowing third-party developers to add new functionality. It is an ideal way to allow new
features to be added without the need to modify the existing, core code.

The documentation for an API explains how things work and what methods can be called. For
some nice tutorials to get started with using the myriad KDE development platform APIs, visit:

http://techbase.kde.org/Development/Tutorials

The KDE development platform API documentation (apidox) can be found at:

http://api.kde.org

This documentation comes in the qch format, an extended HTML format that can be viewed
either in the QtCreator Assistant or via any browser.

The apidox are processed by the Doxygen documentation tool. This tool reads source code
for an application (or library) and produces nicely formatted documentation from it. There is a
good reference manual available, but hopefully you won't need to consult it just for basic
documentation building. When you install the KDE development platform for development
purposes, you should also install Doxygen. Then you can build documentation from any project
by using the following command:

make docs

More information on the KDE API docs can be found at:

http://techbase.kde.org/Development/Tools/apidox

19

http://techbase.kde.org/Development/Tutorials
http://api.kde.org/
http://techbase.kde.org/Development/Tools/apidox

9. DOCUMENTATION

If you write new functions for a KDE project, we certainly hope that you write documentation
(apidox) for it, and try to explain as clearly as possible what can be done with the functions.
The better you document your work, the more developers are likely to use it and the less
likely they are to annoy you by asking basic questions about how it works.

API documentation is sometimes called an API reference manual. It needn't be just a reference
manual, though. It can contain extensive additional material, such as tutorials, examples, and
historical information. This page refers to all the material that documents and explains the API
of a piece of code as "apidox", the term used in the KDE development platform
documentation itself.

Basic apidox writing is fun and simple: add specially formatted comments in your code
explaining what things are supposed to be for. These comments are nearly indistinguishable
from stuff you would be writing in the headers of your code anyway, so that's not hard to do.
Here is a sample.

/**
 * @author praxagora
 *
 * Returns a CHI square comparing two samples.
 * The arrays must be the same size.
 *
 * @param a First sample
 * @param b Second sample
 *
 * @return @size size of each sample.
 */
double chi_square(double a[], double b[], int size) {

double total_a=0.0, total_b=0.0, total, totals[size],
square_a[size], square_b[size], square_totals[size],
 terms[size],
 terms_total=0.0, sum_total=0.0, square_sum_total=0.0;
 int i;
 /**
 * This loop comprises the whole function and computes the CHI
 * square from the two arrays.
 */
 {
 for (i = 0; i < size ; i++)

Note that a comment was included before the function, and before the bracket that starts the
next level of nesting, a for loop. All the parameters, as well as the return value, are marked.

To write good apidox, you first need technical knowledge: you should understand the code
you are documenting--or at least know what it is supposed to do and how it is meant to be
used. The other part of good apidox is plain discipline: apidox are most useful when they are
exhaustive.

Actually, documentation doesn't usually have to explain what the code does at each step. The
code should be so clear, with a clean layout and well-chosen names for methods and variables,
that it is self-documenting. Rather, documentation should explain what code is for, when and
why it is called, the purposes and ranges of its arguments, and perhaps the algorithm used and
the trade-offs made in memory and time.

Look at the Qt documentation to get a feeling for what good apidox look like. They have a
consistency of style and are permeated with a concern for thoroughness. You can learn a lot
about Qt just from reading the documentation. You do not necessarily need to run the tutorial
programs or read the source code of the library to find out what a parameter or flag does in
some method of the library. It is all spelled out for you.

20

KDE DEVELOPMENT BUILD
ENVIRONMENT
10. PREREQUISITES
11. OTHER WAYS TO BUILD THE KDE SC
12. SCRIPTED KDE BUILDS (KDESRC-BUILD)
13. TROUBLESHOOTING YOUR KDE BUILD

21

10. PREREQUISITES

Before you actually build the KDE development environment from source, think -- do you need
to do this? Yes, if you will be working on the KDE SC core. You will not need the entire
environment built from source if you intend to work on one application. We recommend
confirming whether you need to build the environment by posting a question on the mailing list
or chatting up on the IRC.

Assuming you need to build KDE from source, you will need to set up your build environment
and install packages that contain header files used during the compilation of the KDE platform
sources.

SETTING UP THE ENVIRONMENT

In order to set up the KDE platform build environment, you need to create a file defining
environment variables and other settings by following the instructions at:

http://techbase.kde.org/Getting_Started/Build/Environment#Environment_Configuration

Save the file in the root directory for your build environment with the name .build-config. If
you need separate build environments--such as one for stable releases and one for nightly
builds--it is recommended that you create a separate script for each build environment and
leave it in the environment's root directory.

BUILD REQUIREMENTS

This section details the software requirements you must install on your system before you can
start building the KDE platform. For most of these requirements, it is best to use the packages
provided by your operating system distribution, but in some cases you will need to build these
requirements yourself.

Debian/Ubuntu

Minimum build dependencies on Debian/Ubuntu for KDE 4.6 and above are as follows:

sudo apt-get install graphviz libxml2-utils libopenexr-dev libjasper-dev libenchant-dev \
libavahi-common-dev libaspell-dev libasound2-dev libldap2-dev libsasl2-dev \
libsmbclient-dev libxkbfile-dev libxcb1-dev libxklavier-dev libxdamage-dev \
libxcomposite-dev libbluetooth-dev libusb-dev network-manager-dev \
libsensors4-dev libnm-util-dev libcfitsio3-dev libnova-dev libeigen2-dev \
libopenbabel-dev libfacile-ocaml-dev libboost-python-dev libsvn-dev libsvncpp-dev \
libqt4-dev libqca2-dev libstreamanalyzer-dev libstrigiqtdbusclient-dev \
libcommoncpp2-dev libidn11 libidn11-dev libpci-dev libxss-dev libxft-dev \
libpolkit-agent-1-dev libpolkit-backend-1-dev libpolkit-gobject-1-dev git libpoppler-qt4-dev \
libspectre-dev

 Extra and optional packages for Debian/Ubuntu can be found at:

http://techbase.kde.org/Getting_Started/Build/Distributions/Debian

openSUSE

Minimum build depends for openSUSE are as follows:

 yast -i alsa-devel automoc4 avahi-devel patch cups-devel kde4-filesystem \ libbz2-devel avahi-compat-mDNSResponder-devel hal-devel xorg-x11-devel \ libQtWebKit-devel libxml2-devel kdesdk4 clucene-core-devel boost-devel \ libjpeg-devel liblrdf-devel libpng-devel libxslt-devel libredland-devel \ Mesa-devel giflib-devel subversion gcc-c++ gmp-devel xine-devel \ libgpgme-devel pcre-devel dbus-1-devel libqt4-devel cmake git \ doxygen polkit-devel docbook-xsl-stylesheets cyrus-sasl-devel libical-devel

Extra and optional packages for openSUSE can be found at:

http://techbase.kde.org/Getting_Started/Build/Distributions/openSUSE

Other distributions

Please refer to http://techbase.kde.org/Getting_Started/Build/Distributions

22

http://techbase.kde.org/Getting_Started/Build/Distributions/Debian
http://techbase.kde.org/Getting_Started/Build/Distributions/Debian
http://techbase.kde.org/Getting_Started/Build/Distributions

11. OTHER WAYS TO BUILD THE KDE SC

You don't always have to build the KDE SC from bare sources. Many pre-packaged builds of
the KDE SC are available. This chapter will focus on installing KDE SC from the git master
without compiling it from sources.

PROJECT NEON

The wonderful Project Neon team provides daily builds of the KDE SC for developers using
Kubuntu. Project Neon installs binaries and libraries in /opt/project-neon/, which gives you
a sandboxed installation of the master KDE SC alongside your stable KDE SC installation.

Get Project Neon from its Launchpad home page : https://launchpad.net/~neon. You can install
the packages using the following command:

sudo add-apt-repository ppa:neon/ppa && sudo apt-get update && sudo apt-get install project-
neon-base

 More information on Project Neon can be found at:

https://wiki.ubuntu.com/Kubuntu/ProjectNeon

http://techbase.kde.org/Getting_Started/Using_Project_Neon_to_contribute_to_KDE

OPENSUSE

This GNU/Linux distribution provides frequent snapshots of the KDE SC master. The target is
to provide snapshots on a weekly basis, but this is not always possible. These packages may
not always include openSUSE specific patches, and are not available for the oldest openSUSE
releases. You must add the core packages repository to use Extra or Unstable:Playground.

Version: 11.4

Core packages: http://download.opensuse.org/repositories/KDE:/Unstable:/SC/openSUSE_11.4/

Released applications:
http://download.opensuse.org/repositories/KDE:/UpdatedApps/openSUSE_11.4/

Extra: http://download.opensuse.org/repositories/KDE:/Extra/openSUSE_11.4_KDE_Unstable_SC/

Unstable:Playground:
http://download.opensuse.org/repositories/KDE:/Unstable:/Playground/openSUSE_11.4_KDE_Unstable_SC/

Version: 11.3

Core packages: http://download.opensuse.org/repositories/KDE:/Unstable:/SC/openSUSE_11.3/

Released applications:
http://download.opensuse.org/repositories/KDE:/UpdatedApps/openSUSE_11.3/

Extra: http://download.opensuse.org/repositories/KDE:/Extra/openSUSE_11.3_KDE_Unstable_SC/

Unstable:Playground:
http://download.opensuse.org/repositories/KDE:/Unstable:/Playground/openSUSE_11.3_KDE_Unstable_SC/

Version: Factory

Core packages:
http://download.opensuse.org/repositories/KDE:/Unstable:/SC/openSUSE_Factory/

Released applications: Use the application packages from openSUSE:Factory

23

Extra:
http://download.opensuse.org/repositories/KDE:/Extra/openSUSE_Factory_KDE_Unstable_SC/

Unstable:Playground:
http://download.opensuse.org/repositories/KDE:/Unstable:/Playground/openSUSE_Factory_KDE_Unstable_SC/

You can find more information about openSUSE's master KDE builds at:

 http://en.opensuse.org/KDE_repositories#Unstable:SC_aka._KUSC_.28KDE_trunk.29

24

12. SCRIPTED KDE BUILDS (KDESRC-BUILD)

The easiest way to build the KDE Software Compilation (SC) from scratch is to run a script
named kdesrc-build (formerly kdesvn-build), written by Michael Pyne. This approach is highly
recommended for those new to building the KDE SC, because it takes care of almost the
whole process for you. The builds remain compatible with the manual methods of building KDE
SC, so you can change the modules you install later if you want.

kdesrc-build automates the following tasks and more:

Performing the initial checkout
Handling updates for modules that are already checked out
Setting up the build system for the module
Performing the build and install
Specifying your CMake options or configure flags (so you don't have to remember them
every time)
Logging build errors so you can review them more easily for troubleshooting

This is not the be all and end all for your troubles building the KDE SC. T roubleshooting may
still be required. Many errors that occur using other methods occur here too: you should read
the log files that are stored for you.

USEFUL LINKS FOR FINDING MODULES

When using kdesrc-build, you may find it beneficial to search the source repository for modules.
Sources include the following:

To browse any of the various KDE SC projects using git, you can go
to https://projects.kde.org/ or to http://gitweb.kde.org/.

To browse the KDE Subversion repository, use http://websvn.kde.org/trunk/KDE/

SETUP

These subsections cover all the things you need to get and install kdesrc-build itself.

Prerequisites

kdesrc-build is fairly easy to install and set up, but you need to have the right software installed to
build KDE SC. The requirements to build KDE SC are available at:

http://techbase.kde.org/Getting_Started/Build/Requirements

kdesrc-build requires Perl 5.8 or higher. It is installed by default with most distributions, and is
included in the previous link. Check your version of Perl with:

perl -v

You will also need libwww , a collection of Perl Internet-related
modules from https://github.com/gisle/libwww-perl.

Downloading and installing kdesrc-build

Once your system is set up and able to compile the KDE SC, you can download kdesrc-build
from its website, http://kdesrc-build.kde.org. The file you download will contain (at least) the
kdesrc-build script and a sample configuration file.ut Installing kdesrc-build is as simple as saving
the file and making it executable. If you'd like, you can move it to a directory in your PATH,
however for this example we'll put it into the KDE SC source directory that we use (~/kdesrc).

m kdirm kdir -p ~// kdesrc & && &
cdcd ~// kdesrc & && &
tartar xjvf ~// path// to// kdesrc-build-1.12.tar.bz2 & && &
cpcp kdesrc-build-1.12// kdesrc-build .

25

https://projects.kde.org/
http://gitweb.kde.org/
http://websvn.kde.org/trunk/KDE/
http://techbase.kde.org/Getting_Started/Build/Requirements
https://github.com/gisle/libwww-perl#readme
http://kdesrc-build.kde.org

Alternatively, the newest kdesrc-build script (and sample config file) can be pulled down directly
using git:

git clone git://anongit.kde.org/kdesrc-build.git ~/kdesrc

SETTING UP THE CONFIGURATION

Configuration options for kdesrc-build are taken from a file named ~/.kdesrc-buildrc. Directions
for editing this file are at:

http://techbase.kde.org/Getting_Started/Build/kdesrc-buildrc

For the most part the defaults in the included kdesrc-buildrc-sample should be sufficient. You
can copy it to your home directory as follows:

cp ~/kdesrc/kdesrc-build-1.12/kdesrc-buildrc-sample ~/.kdesrc-buildrc
Now edit the ~/.kdesrc-buildrc

Note that the config file name begins with a leading dot (.), making it a hidden file. If you are
using Dolphin or Konqueror from the desktop, you may need to show hidden files in order to
find the configuration file and edit it. Alternatively, you can edit the sample file before copying
it to ~/.kdesrc-buildrc.

Also, make sure that the modules you'll want to build are included. You'll want the following at the least:

qt-copy

kdesupport

kdelibs

kdepimlibs

kdebase

Modules are built in the order they appear in your ~/.kdesrc-buildrc file, so the first module should be
qt-copy. kdesupport should be before kdelibs, which should be before any other KDE SC module, and
so on.

The sample configuration file does include these modules by default. So you won't need to
make many changes unless you'd like to add some modules to the build by uncommenting
them.

If a module you'd like to build isn't already present, simply add the following to the end of the ~/.kdesrc-
buildrc:

module module-name
end module

module-name is whatever the module is called in the software repository (for instance, kdemultimedia).

You may want to enable the make-install-prefix option if you are installing KDE SC or Qt to a
directory that is not in your home directory. Through make-install-prefix, you can
run su or sudo during the make install process so you can install files as root, or set certain
programs to execute with higher permissions. (This is required for certain programs to execute
properly.)

module kdelibs
 make-install-prefix sudo -S # sudo with no stdin
end module

module kdebase
 make-install-prefix sudo -S
end module

Git-based modules

Most of the KDE SC modules are in git, although a few of them still need to be ported from
svn to git. Eventually, all KDE SC modules and projects will be in git.

To build these modules in kdesrc-build, you just need to add a couple of lines to the module
configuration. For example, konversation is developed in the Git repository at:

https://projects.kde.org/projects/extragear/network/konversation/repository

So to add this module, write the following at the end of ~/.kdesrc-buildrc:

26

http://techbase.kde.org/Getting_Started/Build/kdesrc-buildrc
http://techbase.kde.org/Getting_Started/Build/kdesrc-buildrc
https://projects.kde.org/projects/extragear/network/konversation/repository

module konversation
 repository git://anongit.kde.org/konversation
 branch master
end module

In this case I selected the "master" branch since that is the default git branch.

Now whenever you build konversation, kdesrc-build will use git instead of Subversion.

USEFUL KDESRC-BUILD COMMANDS

kdesrc-build is driven from the command line, so here's a guide to some of the more useful command
line options:

Option Effect

--pretend (-p) This option is like a dry run. kdesrc-build will process the options and its
configuration like normal, and run through the build as normal, but instead of
downloading or running the build it will just print messages about what it would have
done. You should always run with -p before running the script for real, to make sure
it is doing what you expect.

--nosvn (--no-
src)

This option skips the source code update step. This is useful if you're running
kdesrc-build again soon after a previous update and don't want to wait just to find
out there were no changes.

--refresh-build This option causes kdesrc-build to delete the current build information for the
modules given on the command line and build them again from scratch. This option
adds a lot of time but offers the best chance of a successful build.

Any non-option arguments on the command line are assumed to be modules to build (and are built in
the order provided on the command line). If no modules are specified, all of the modules listed in the
~/.kdesrc-buildrc are built, in the order listed in the file.

BUILDING THE KDE SC

We're almost there. If you're happy with your settings, it's time to test out kdesrc-build. In theory things
are as simple as running kdesrc-build and then coming back later.

cd ~/kdesrc
./kdesrc-build

You may want to test it by building just qt-copy first, however.

cd ~/kdesrc
./kdesrc-build qt-copy

If the build failed (kdesrc-build will error out with a nice bright red error message), there are several
possible things to check for:

1. You may be missing a key piece of required software (such as a development library)

2. The KDE SC code being compiled may be broken in some fashion so it won't build. This is
commonly due to newly committed code that worked on the developer's machine, or occasionally
because it is Monday (when incompatible changes are permitted to kdelibs).

3. ~/.kdesrc-buildrc may not be set up properly. You may be trying to install to a directory that you
do not have permission to access, for instance, or you may have specified a system qtdir that
does not exist.

4. The module may depend on a newer version of qt-copy or kdelibs (or another module). In this
case you'll have to run kdesrc-build to update the out-of-date module first.

How do you find out what the error was? The output of the failing command will be in the log directory.
By default, all log output is in the log subdirectory of the KDE SC source directory. The log directory is
laid out like this: log/date-run/module/output-file.log. To simplify finding the appropriate file, a
couple of symlinks are created:

log/latest

Contains the debugging output from the last time kdesrc-build ran (--pretend does not affect
this).

log/latest/module/error.log

27

http://kdesrc-build.kde.org/documentation/cmdline.html#cmdline-refresh-build

For instance, if qt-copy just failed to build, you could read the output like this:

cd ~/kdesrc
kwrite log/latest/qt-copy/error.log

Replace kwrite with your preferred editor. Hopefully the output can guide you to resolving the problem.
For instance, if the failure is CMake output saying you're missing a library, install that library and try
again. For link errors, you can try running with the --refresh-build on the module (or if that doesn't
work, on required libraries like qt-copy and kdelibs).

If you're stumped by the error, you may want to wait a day and try updating again, and hope that the
reason for the error has been fixed. You can also try mailing the kde-devel mailing list to see whether
others know about the problem or have had similar issues.

RUNNING YOUR NEW KDE INSTALLATION

Assuming you got enough of the modules to build and install to have a working KDE SC
installation, you'll still need to set up your environment correctly to run it. kdesrc-build doesn't
help you out here (yet), so you should follow the instructions at:

http://techbase.kde.org/Getting_Started/Using_an_IDE_with_KDE4

Make sure to use the same paths as the ones you defined in ~/.kdesrc-buildrc. For the KDEDIRS
and KDEDIR variables, use the setting of the "prefix" option (in the global section). For the
QTDIR variable, use the setting of the "qtdir" option.

KEEPING YOUR KDE INSTALLATION UP TO DATE

28

http://techbase.kde.org/Getting_Started/Using_an_IDE_with_KDE4

KEEPING YOUR KDE INSTALLATION UP TO DATE

Keeping your KDE installation up to date is as simple as running kdesrc-build again. Every build
has these phases:

1. Update the source code for all modules being built.
2. Build and then install all the modules.

Old build directories are not deleted by default, so the build after a small update will not
normally take as long as the initial build of a module. This is called "incremental make".
However it may be necessary at times to perform a full rebuild, due to inconsistencies
between the build directory configuration and changes to the source directory. You can use
the --refresh-build option to force a full rebuild.

For more information on how to take advantage of kdesrc-build, see the documentation at:

http://kdesrc-build.kde.org/documentation/

The site describes all of the module options and command line options available for kdesrc-
build and gives tips on how to perform various useful tasks.

29

http://kdesrc-build.kde.org/documentation/

13. TROUBLESHOOTING YOUR KDE BUILD

Compile and Linking errors are frequent sources of discouragement. Make careful note of the
first occurrence of an error in your build process. It could be as simple as a bad environment
variable, an unexpected version of a library or missing prerequisite. Please read the instructions
carefully. Check for spelling errors while using module names as well as commands.

Please review your logs and do searches for fixes. If you cannot find a solution then please ask
for help on IRC or a Mailing List.

30

ADVANCED TOPICS
14. READING BACKTRACES

31

14. READING BACKTRACES

A backtrace (also called a stack trace or stack traceback) is a report of how the program has called different
functions as it goes along. It is commonly used during interactive and post-mortem debugging. It can also be
displayed to the user of a program as part of an error message, which a user can report to a programmer.

Each function puts a stack frame on the stack containing its arguments and other information it needs to run.
The active stack frames reflect a certain point in time during the execution of a program. A stack trace allows
you to track the sequence of nested functions called up to the point where the stack trace is generated. In a
post-mortem scenario , the stack trace goes up to , and includes, the function where the failure occurred. Be
aware, however, that the function where the failure occurred might not be responsible for the failure; an error
could well have been embedded in a higher function (for instance, by pass ing an incorrect value to the function
where the program failed).

The following figure illustrates a stack frame, where main() called hello(), which called
hi(), which called readinput(). A stack trace is likely to work down from the last call to
the first, so that readinput() might appear first.

Backtraces are essential. They may look meaningless to you, but they might actually contain a wealth of useful
information. A backtrace describes which functions were called prior to the crash, so that developers may track
down in which function the mess started. Exact memory addresses can also help locate problematic data, such
as in a core dump (a file left behind when a program fails , containing the contents of live memory at the time of
the failure). But producing good backtraces has a downside: libraries and executables occupy much more disk
space than their optimized counter parts that can't provide the information to produce a backtrace.

The KDE Crash Dialog (Dr. Konqi) should appear right after a crash.

Opening the "Developer Information" tab will display the relevant backtrace. This process may
take some time and a lot of memory, so things may go sluggish all of a sudden. But the result
should look something like this:

Using host libthread_db library "/lib/libthread_db.so.1".
[Thread debugging using libthread_db enabled]
[New Thread -1232783168 (LWP 7604)]
[KCrash handler]
#6 0x0806be76 in TreeMapItem::parent (this=0x0)
 at /home/bram/KDE/kde3/kdeaddons/konq-plugins/fsview/treemap.h:285
#7 0x08065fea in TreeMapItemList::compareItems (this=0xbfec04a8, item1=0x0,
 item2=0x0)
 at /home/bram/KDE/kde3/kdeaddons/konq-plugins/fsview/treemap.cpp:720
#8 0xb7281619 in QGList::operator== () from /usr/qt/3/lib/libqt-mt.so.3
#9 0x0806d498 in QPtrList<TreeMapItem>::operator== (this=0xbfec04a8,
 list=@0xbfec0468) at /usr/qt/3/include/qptrlist.h:74
#10 0x08062e18 in TreeMapWidget::mousePressEvent (this=0xbfec03ac,
 e=0xbfebff1c)
 at /home/bram/KDE/kde3/kdeaddons/konq-plugins/fsview/treemap.cpp:1840
#11 0xb7004a63 in QWidget::event () from /usr/qt/3/lib/libqt-mt.so.3
#12 0xb6f6bca7 in QApplication::internalNotify ()
 from /usr/qt/3/lib/libqt-mt.so.3
#13 0xb6f6ca88 in QApplication::notify () from /usr/qt/3/lib/libqt-mt.so.3

32

http://techbase.kde.org/File:Kde-crash-handler.png

#14 0xb7725a84 in KApplication::notify (this=0xbfec055c, receiver=0xbfec03ac,
 event=0xbfebff1c)
 at /home/bram/KDE/kde3/kdelibs/kdecore/kapplication.cpp:550
#15 0xb6f0bfd2 in QETWidget::translateMouseEvent ()
 from /usr/qt/3/lib/libqt-mt.so.3
#16 0xb6f0b8b0 in QApplication::x11ProcessEvent ()
 from /usr/qt/3/lib/libqt-mt.so.3
#17 0xb6f1b761 in QEventLoop::processEvents () from /usr/qt/3/lib/libqt-mt.so.3
#18 0xb6f82831 in QEventLoop::enterLoop () from /usr/qt/3/lib/libqt-mt.so.3
#19 0xb6f826b6 in QEventLoop::exec () from /usr/qt/3/lib/libqt-mt.so.3
#20 0xb6f6b72f in QApplication::exec () from /usr/qt/3/lib/libqt-mt.so.3
#21 0x0805181e in main (argc=134673960, argv=0xffffffff)
 at /home/bram/KDE/kde3/kdeaddons/konq-plugins/fsview/main.cpp:55

In this backtrace, the first stack frame is shown on line #6. Because the stack is unwound from
the end back to the beginning, we can see that the call that crashed the program was
parent(), which was called by compareItems() on line #7 , which in turn was called by
the overloaded == operator on line #8, and so on.

After the line number, the hexadecimal number starting each line is the address in memory
where the stack frame starts for each function. Unless you have a core dump, this is not useful
to you. More interesting are the lists of arguments and the addresses of their data in
parentheses. Thus , line #6 shows that parent() was called with a single argument, this,
whose value was 0 (0x0 in hex). Of course, the name this is assigned to the object on which
the method was invoked. So the parent() method was actually called without arguments.
Methods in object-oriented languages are passed the pointer to the object on which they were
invoked as their first argument. So compareItems() on line #7 was called with two
arguments, but because this was passed as the first argument, three are shown in
parentheses.

On line #6, the string "(this=0x0)" indicates that the parent() function is being called with a
NULL pointer. Of course, any program will crash if it tries to retrieve data from, or put data
into, an address to which it doesn't have access. The address 0x0 on virtually every computer
system is reserved and unavailable to the program, so you can tell that reading from or
writing to a NULL pointer will cause a crash. You can also see, in the documentation for the Qt
function parent(), that it is called without arguments (so the problem was not caused by a
bad argument) and returns a pointer to the parent of the object on which it is
called. Therefore, the developer should try to figure out what object parent() was called on
and why the parent could not be returned.

33

APPENDICES
15. USEFUL TOOLS
16. KDE DEVELOPER GUIDE FREQUENTLY ASKED
QUESTIONS (FAQ)
17. GENERAL GLOSSARY
18. USEFUL LINKS
19. ABOUT THIS BOOK

34

15. USEFUL TOOLS

This chapter lists some of our favorite tools for software development, debugging. building,
and other activities. Some are discussed in other parts of the book as well.

CORE TOOLS

These are absolutely required to build and develop KDE software. On Linux, they will typically
be provided by your distribution. On other platforms, packages should normally be available,
often for download directly from the home page of the tool. Of course, the standard
development tools, such as a C/C++ compiler and some sort of text editor, are also required.

CMake - CMake is the build system of choice for the KDE SC. Once you have this, you can use
it to configure a software project for building, and that process will tell you of any other
requirements you are missing.

Git - Most KDE SC projects are developed in Git, so you will need it to get the source code in
the first place. You can find the relevant Git URLs at the KDE SC projects directory. It will be
helpful to follow the git configuration instructions.

Subversion - The KDE SC still uses Subversion for some things, notably translations.

DEBUGGING AND ANALYSIS TOOLS

These are used to analyze a program and do such tasks as profiling.

Valgrind - Valgrind helps to find memory leaks and uninitialized memory blocks. It also
includes a profiler and more. Valgrind is one of the most important development tools.

The GNU Project Debugger (GDB) - GDB helps you find problems in source code by
allowing you to set breakpoints, step through the code, look at stack traces, etc. It keeps
evolving, but we currently recommend version 6.x. Graphical frontends are available. See also
the debugging tutorial "Debugging with GDB"
at http://techbase.kde.org/Development/Tutorials/Debugging/Debugging_with_GDB

KDbg and DDD - KDbg and DDD are graphical user interfaces to GDB.

MS Windows tools (Process Explorer, Console, WinDbg, DebugView, etc.) - More
information about these is available on the "KDE on Windows" page on Techbase:

http://techbase.kde.org/Projects/KDE_on_Windows

DEVELOPMENT TOOLS

These are more basic tools that will help you with your development. We have discussed some
of these earlier.

Qt Creator

This is the recommended IDE for KDE SC development, making it easy to write new programs
and to integrate existing ones into an IDE. Further details can be found in this tutorial:

 http://www.developer.nokia.com/Community/Wiki/How_to_use_Qt_Creator_IDE

KDevelop

KDevelop is the IDE created as part of the KDE SC for developing KDE and Qt C++
applications. It includes a an integrated debugger, a powerful editor with syntax highlighting, a
Project wizard to create applications from templates, the automake/autoconf suite, and even
the class documentation. Further details can also be found on the KDevelop wiki.

 http://kdevelop.org/

35

http://techbase.kde.org/Development/Tutorials/Debugging/Debugging_with_GDB
http://techbase.kde.org/Projects/KDE_on_Windows
http://www.developer.nokia.com/Community/Wiki/How_to_use_Qt_Creator_IDE

Eclipse

Eclipse was developed for Java programming, but designed with a view toward extensibility
that has made it popular for many programming languages. You can find out more
at http://www.eclipse.org.

MS Visual Studio® Express IDE (Windows only)

Visual C++® Express is the free version of the Microsoft Visual Studio compiler from, and is
officially supported by Nokia. It is a choice for compiling Qt and KDE applications on Windows.
More information can be found at:

http://techbase.kde.org/Projects/KDE_on_Windows

Internationalization (i18n) Tools

These help you create applications that can be viewed and used in different languages and
with the local conventions of different countries for currency, time, etc.

Lokalize

Lokalize is a computer-aided translation (CAT) system that focuses on productivity and quality
assurance. It has the usual components for CAT tools: translation memory, a glossary, etc. It
also includes a unique translation merging (synchronization) capability. It is targeted at software
translation and integrates external conversion tools for freelance office document translation.

Dr. Klash

This reports conflicting shortcuts in menus. It's helpful for both translators and developers.

The x-test language

This language helps you find untranslated strings in applications. If you start your application
with the "x-test" locale, all translated strings will appear with trailing and leading xx's.

HELPER TOOLS

These provide a variety of useful functions.

kde4-config

This helps a user to find out more about a KDE SC installation.

kfmclient

This lets you control the Konqueror browser through scripts.

kioclient

Command-line tool for network-transparent operations

kconf_update

This updates configuration files.

apidox tools

These help develop and generate API documentation for your code.

Automoc4

This is a helper tool that builds KDE SC4. It automatically generates moc-files.

svnmerge.py

36

http://www.eclipse.org/
http://techbase.kde.org/Projects/KDE_on_Windows

This tool helps you keep track of merges between different SVN branches.

QUALITY ASSURANCE

Code Review

KDE uses the Review Board for performing code reviews; see the page on the Review Board on
the kDE Techbase for more information:

http://techbase.kde.org/Development/Review_Board

Continuous Building - Dashboards

Dirk's dashboard has all KDE modules, while the win32 dashboard has a selection available on
Windows.

English Breakfast Network - Static Analysis

The English Breakfast Network is a collection of machines that do automated KDE source
artifact quality checking. Basically, that means they have a git clone of the entire KDE codebase
(including documentation and whatnot) and they run checking tools on that.

EBN uses:

Krazy - Code Analysis

APIDOX - API Documentation

Sanitizer - DocBook Checker

Usability Checks

37

http://techbase.kde.org/Development/Review_Board

16. KDE DEVELOPER GUIDE FREQUENTLY

ASKED QUESTIONS (FAQ)
Q. I want to help/develop the KDE SC. How do I start?

A. A great way to get familiar with the codebase is to fix some bugs. You can find a number of
"Junior Jobs" on the KDE Bugzilla. Search for the "Junior Jobs" link on the KDE bugzilla
(http://bugs.kde.org) on the left.

Q. I do not understand what [insert strange term here] means.

A. Check the term in the General Glossary and KDE Jargon.

Q. What project should I contribute to?

A. Find something that interests you, and start hacking! Most people start by "scratching their
own itches" first, which means that they try to fix the bugs that irritate them the most. See
also the list of KDE SC projects in the section Choosing a project.

Q. How do I set up the Development Environment?

A. This is documented in the KDE Development build environment section of this book.

Q. What programming languages do I need to know?

A. Most of the KDE SC is written in C++, but KDE SC has bindings for Python, Ruby, etc. The
Qt toolkit will be very useful to you in most of the KDE SC codebase.

Q. What programming concepts do I need to know?

A. An understanding of object-oriented programming (OOP) is valuable if you want to hack on
the KDE development platform, but is not necessary for developing applications. You need also
to know about software version control and the Qt communications concepts of signals and
slots.

Q. How do I read backtraces?

A. This is covered in the Reading Backtraces section of this book.

Q. How do I use Valgrind?

A. Please refer to http://techbase.kde.org/Development/Tools/Valgrind for a brief overview of
Valgrind.

Q. What's the best distro for KDE SC development?

A. Any distribution that provides the latest and greatest KDE SC packages is just fine for
developing the KDE SC.

38

http://bugs.kde.org/
http://techbase.kde.org/Development/Tools/Valgrind

Q. How do I report a bug?

A. Use Bugzilla, our bug tracking software. A good bug report is thorough (containing all
details that could be relevant, such as the operating system you're using, the versions of all
related software, and the precise actions you were doing when the bug occurred). It should
also be factual, polite, and clearly written. For a quick introduction to bugzilla, please refer to:

http://techbase.kde.org/Contribute/Bugsquad/Quick_Introduction_to_Bugzilla

For more Frequently Asked Questions visit http://techbase.kde.org/Category:FAQs

39

http://techbase.kde.org/Contribute/Bugsquad/Quick_Introduction_to_Bugzilla

17. GENERAL GLOSSARY

40

A

Accessibility (a11y): The ability of all people, regardless of disability or severity of impairment,
to use the features of a program.

Akonadi: KDE extensible cross-desktop storage service for personal information management
(PIM) data and metadata providing concurrent read, write, and query access. Provides desktop-
wide object identification and retrieval.

Akregator: KDE open source feed aggregator, supporting both RSS and Atom. Feeds can be
sorted into categories, and there is an incremental search feature for the titles of all the
entries in the database.

Algorithm: step-by-step procedure for calculations, data processing, and automated
reasoning.

Amarok: Rediscover Your Music using KDE's Amarok. Core features such as the unique context
browser, integrated Wikipedia lookup and lyrics download help users to find new music, and to
learn more about the music they have.

Application programming interface (API): A particular set of coding rules and specifications
that software programs can follow to communicate with another. It serves as an interface
between different software programs and facilitates their interaction, similar to the way the
user interface facilitates interaction between humans and computers.

apidox: API Documentation

Applet: Program written in Java to be embedded in another environment, such as a Web page.

B

Backtrace: also called stack backtrace, stack trace or stack traceback. This is a report of the
active stack frames at a certain point in time during the execution of a program. When using
KDE software, one gets the best backtrace from Dr. Konqui, if it pops up after a crash.
Otherwise, GDB can be used to get a backtrace.

Bot: Software applications that run automated tasks over the Internet, or in IRC channels.

Bug : An error, flaw, mistake, failure, or fault in a computer program or system that produces
an incorrect or unexpected result, or causes it to behave in unintended ways.

Bug Squad: The team that keeps track of incoming bugs in KDE software.

Bugzilla: A web-based, general-purpose bugtracker and testing tool, used by the KDE
community.

Build: Short for software build, which refers either to the process of converting source code
files into standalone software artifact(s) that can be run on a computer, or the result of doing
so. One of the most important steps of a software build is the compilation process, which
converts source code files into executable code.

Build system: Software tools that script or automates a wide variety of tasks that software
developers do in their day-to-day activities, such as compiling computer source code into
binary code, packaging binary code, running tests, deploying code to production systems, and
creating documentation and/or release notes.

C

Channel, IRC channel: The basic place to ask questions and get help in IRC. It is rude to direct
questions to one person rather than asking the help channel in general.

CMake: an open-source build system that enables developers to automate compiling, testing
and packaging of software based on specifications written in text files.

Code: Text written in a computer programming language.

Commit: To make a set of tentative changes permanent.

41

Compile: To use a compiler to process source code into executable code. Also a destination
for messages logged by programs or the operating system, where administrators or
developers can view the messages.

Console: A command-line interface (CLI).

C++ : The coding language in which KDE software is primarily built.

D

Debugger: A computer program used to test and find bugs in other programs (the target
programs).

Desktop: In graphical computing, a desktop environment (DE) commonly refers to a style of
graphical user interface (GUI) derived from the desktop metaphor that is seen on most
modern personal computers. The most popular modern Linux desktops are the KDE
workspaces and GNOME.

Dependency: A package you need to install in order for your application to build and run.

Diff: A file comparison utility that outputs the differences between two files. Also refers to the
output of such a program, which can be called a patch (since the output can be applied with
the Unix program patch).

digiKam: an image organizer and editor that uses the KDE Platform. It runs on most known
desktop environments and window managers, supports all major image file formats, and can
organize collections of photographs in directory-based albums, or dynamic albums by date,
timeline, or tags. Users can also add captions and ratings to their images, search through them
and save searches for later use. With the plugins one can also export albums to 23hq,
Facebook, Flickr, Gallery2, Google Earth's KML files, SmugMug, Piwigo, and Simpleviewer, or burn
them onto a CD, or create a web gallery.

Distributed repository: A peer-to-peer approach to sharing and maintaining code or other
collaborative work, in contrast to the client-server approach of centralized systems. Rather
than a single, central repository on which clients synchronize, each peer's working copy of the
codebase is a separate repository bound by a web of trust.

Distribution (Distro): a selection of packages that make up a working software system, and
provided together to the user. Often applied to the GNU/Linux system in particular.

Docs: documentation, an essential part of the development process.

E

EBN: English Breakfast Network, a site dedicated to the contemplation of tea, KDE API
Documentation Validation, User Documentation Validation, Source Code Checking,
omphaloskepsis, and star-gazing.

Eclipse: A multi-language software development environment comprising an integrated
development environment (IDE) and an extensible plug-in system. It is written mostly in Java
and can be used to develop applications in Java and, by means of various plug-ins, other
programming languages including Ada, C, C++, COBOL, Perl, PHP, Python, R, Ruby (including the
Ruby on Rails framework), Scala, Clojure, Groovy, and Scheme.

Environment: A set of configuration scripts and bash commands provided as a recommended
configuration when building KDE software manually.

e.V.: Eingetragener Verein, a registered voluntary association in Germany. The KDE e.V. is a
registered non-profit organization that represents the KDE Community in legal and financial
matters.

F

42

Forum: An online discussion site where people can hold conversations by posting messages.
They differ from chat rooms in that messages are archived. A discussion forum is hierarchical
or tree-like in structure: a forum can contain a number of subforums, each of which may have
several topics. Within a forum's topic, each new discussion started is called a thread, and can
be replied to by anyone who wishes to.

FOSS: Free and open-source software (F/OSS, FOSS) or free/libre/open-source software
(FLOSS, FL/OSS) is software that is liberally licensed to grant users the right to use, study,
share, change, and improve its design through access to its source code.

Framework: An abstraction in which software providing generic functionality can be selectively
changed by user code, thus providing application specific software. It is a collection of
software libraries providing a defined application programming interface (API).

Frameworks: Beginning with KDE Frameworks 5.0, KDE has a roadmap for the next major
releast of KDE's libraries and runtime requirements, with an emphasis is on modularity,
dependency clarity, simplification and increasing quality.

Freenode: An IRC network used to discuss peer-directed projects.

G

GDB: GNU Debugger, usually called just GDB and named gdb as an executable file. This is the
standard debugger for the GNU software system.

Git: a distributed revision control system with an emphasis on speed and support for multiple
branches shared among many developers. Every Git working directory is a full-fledged
repository with complete history and full revision tracking capabilities, not dependent on
network access or a central server. Free software distributed as GPL v.2.

Gluon: a way of creating and playing games, and a means for players and makers of games to
get together and talk about their shared interest. You can use the powerful Gluon Creator to
build the games, interact with other makers and players of games on the GamingFreedom.org
network site, and play them on any of the many supported platforms with one of the Gluon
Player applications.

GPL: The GNU General Public License is a free, copyleft license for software and other kinds of
works.

H

I

Integrated development environment (IDE): a software application that provides
comprehensive facilities to computer programmers for software development. An IDE normally
consists of a source code editor, a compiler and/or an interpreter, build automation tool, and a
debugger. (Also known as integrated design environment, integrated debugging environment,
or interactive development environment.)

Internationalization (i18n): The insertion of constructs that make it easy to change the
interface and language of a program for different cultures and countries (see
also Localization).

Internet Relay Chat (IRC): A text-based real-time communication tool. KDE channels are on
irc://irc.freenode.net.

J

K

Kate: a text editor included in the KDE SC. The name Kate is an acronym for KDE Advanced
Text Editor.

43

KDE PIM: KDE Personal Information Management, such as Kontact, KMail, KOrganizer, etc.
Also, a work group within the larger KDE SC project that develops the individual Kontact
applications in a coordinated way.

KDE SC: KDE Software Compilation, the sources for the KDE distribution

KMail: KDE email client that supports folders, filtering, viewing HTML mail, and international
character sets. It can handle IMAP, IMAP IDLE, dIMAP, POP3, and local mailboxes for incoming
mail. It can send mail via SMTP or sendmail.

Konqueror: KDE web browser and file manager. Provides file-viewer functionality to a wide
variety of things: local files, files on a remote ftp server and files in a disk image.

Konsole: a free terminal emulator that is part of KDE SC. The KDE applications Konqueror,
Krusader, Kate, Konversation, Dolphin and KDevelop use Konsole to provide embedded
terminal functionality.

Kontact: KDE's personal information manager and groupware software suite. Supports
calendars, contacts, notes, to-do lists, news, and email. Uses KParts to embed the various
applications (KMail, KAddressBook, Akregator, etc.) into the container application.

Kopete: KDE's multi-protocol, free software instant messaging client.

Kpackage Kit: KDE's frontend for PackageKit. PackageKit is an open source suite of software
applications designed to provide a consistent and high-level front end for a number of
different package management systems.

Kparts: component framework for the KDE SC. For example, Konsole is available as a KPart
and is used in applications like Konqueror and Kate.

Konversation: user-friendly Internet Relay Chat (IRC) client built on the KDE Platform.

KWin: the window manager that is an integral part of the KDE SC. It can also be used on its
own or with other desktop environments.

L

LAMP: acronym for a software bundle or platform consisting of Linux, Apache, MySQL and
Perl/PHP/Python.

Licensing : legal instruments (usually by way of contract law) that govern the usage or
redistribution of software. All software is copyright protected, except material in the public
domain.

Localization (l10n): making the changes required to display a program's interface using the
language and conventions of a particular country (see also Internationalization).

M

Mailing list: A collection of names and addresses used by an individual or an organization to
send material to multiple recipients. Often extended to include the people subscribed to such a
list, so the group of subscribers is referred to as the mailing list, or simply the list.

N

Nepomuk: KDE workspaces project that supports annotations, indexing, search, and linking.

Nick: a user's screen name or online handle.

Nightly: a neutral build that reflects the current state of the source code checked into the
version control system by the developers, as built in a neutral environment (that is, in an
environment not used for development). A nightly build is a neutral build that takes place
automatically, typically each night. Project Neon is such a project for KDE.

O

44

Object-oriented programming (OOP): a programming paradigm using objects – data
structures consisting of data fields and methods together with their interactions – to design
applications and computer programs.

Ocular: KDE's universal document viewer based on KPDF.

Operators (IRCops): Channel operators have powers over the IRC channel, including
moderating or kicking out disruptive users. IRCops or sysops control the IRC server, so they
control the channels as well as having control over who can participate. On most systems, ops
are identified with a symbol next to their nicks, but Freenode discourages ops from appearing
as such unless they have work to do in the channel.

P

Package, packaging : There are two types of packages that may be downloaded from the
KDE FTP site: binary packages (rpms, debs, and the like) and source packages. Binary packages
are compiled ("runnable") versions of KDE SC that are built to run on a specific OS or
distribution. Source packages are the raw code that makes up KDE SC, and need to be
compiled before they can be used. KDE software packages available from the distributions
may be slightly different from the pure KDE source packages.

Pastebin: a web application that allows users to upload snippets of text, usually samples of
source code, for public viewing.Use is encouraged in IRC channels, where pasting large amounts
of text is considered bad etiquette. KDE's pastebin is hosted at http://paste.kde.org

Patch: software designed to fix problems with, or update a computer program or its
supporting data. This includes fixing security vulnerabilities and other bugs, and improving the
usability or performance.

Phonon: multimedia API provided by Qt; the standard abstraction for handling multimedia
streams within the KDE SC.

Plasma Active: the latest initiative of the Plasma team, bringing KDE functionality to mobile
devices.

Plasma: KDE SC framework to facilitate the creation of widgets. These cover interactive
application launchers, window and task managers, and more.

Plasmoid: widget in the Plasma Desktop environment.

Post-mortem debugging: Debugging after a crash report has been filed.

Q

QtCreator: An integrated, cross-platform IDE for C++ and JavaScript that is part of the Qt
SDK.

Qt: Cross-platform application framework that is widely used for developing application
software with a graphical user interface (GUI).

Quassel: cross-platform, distributed IRC client, meaning that one (or multiple) client(s) can
attach to and detach from a central core -- much like the popular combination of screen and a
text-based IRC client such as WeeChat, but graphical.

R

Rekonq: KDE web browser based on WebKit.

Reviewboard: web-based collaborative code review tool, available as free software under the
MIT License. An alternative to Rietveld and Gerrit, Review Board integrates with Bazaar,
ClearCase, CVS, Git, Mercurial, Perforce, and Subversion.

Review: systematic examination (often as peer review) of computer source code. It is intended
to find and fix mistakes overlooked in the initial development phase, improving both the
overall quality of software and the developers' skills.

45

S

Script: small program written for a command interpreter or another scripting language.

Server: computer program running to serve the requests of other programs, the clients.

Solid: device integration framework for KDE SC. It functions on similar principles to KDE's
multimedia pillar Phonon; rather than managing hardware on its own, instead it makes existing
solutions accessible through a single API.

Source: Human-readable instructions in a programming language, to be transformed into
machine instructions by a compiler, interpreter, assembler or other such system.

Sprint: face-to-face meeting of team members who usually work together remotely.

Suite: collection of computer programs, usually application software and programming
software of related functionality, often sharing a more-or-less common user interface and
some ability to smoothly exchange data with each other.

Summit: in KDE and FOSS, a large meeting for members who usually work remotely. Team
sprints may take place before, during and after a large summit.

SVN (Subversion): A software versioning and a revision control system distributed under a
free license, part of the Apache Foundation.

T

Techbase: KDE's developer documentation wiki.

Telepathy: A realtime communication framework that supports instant messaging, VoIP, and
collaboration.

Terminal: interface for serial entry and display of textual data. See also console.

Testing : investigation conducted to provide stakeholders with information about the quality
of the product or service under test.

Text editor: program used for editing plain text files.

Toolchain: set of programming tools that are used to create a product (typically another
computer program or system of programs). The tools may be used in a chain, so that the
output of each tool becomes the input for the next, but the term is used widely to refer to
any set of linked development tools.

Toolkit: set of basic building units for graphical user interfaces. KDE SC uses the Qt toolkit.

Trunk: the unnamed branch (version) of a file tree under revision control. The trunk (or
master) is usually meant to be the base of a project on which development progresses.

U

Unit tests: method by which individual units of source code are tested to determine if they
are fit for use. A unit is the smallest testable part of an application. In object-oriented
programming a unit is usually an interface, such as a class.

Usability: ease of use and learnability of a human-made object, in this case, our software.

Userbase: KDE's user documentation wiki.

V

Valgrind: GPL licensed programming tool for memory debugging, memory leak detection, and
profiling. The name valgrind comes from the main entrance to Valhalla in Norse mythology.

46

Variable: symbolic name given to some known or unknown quantity or information, for the
purpose of allowing the name to be used independently of the information it represents. A
variable name in computer source code is usually associated with a data storage location and
thus also its contents, and these may change during the course of program execution.

Version control: Revision control, also known as version control and source control (and an
aspect of software configuration management or SCM), is the management of changes to
documents, programs, and other information stored as computer files. It is most commonly
used in software development, where a team of people may change the same files. Changes
are usually identified by a number or letter code, termed the "revision number", "revision
level", or simply "revision".

W

Widget: element of a graphical user interface (GUI) that displays an information arrangement
changeable by the user, such as a window or a text box. The defining characteristic of a
widget is to provide a single interaction point for the direct manipulation of a given kind of
data. In other words, widgets are basic visual building blocks which, combined in an application,
hold all the data processed by the application and the available interactions on this data.

Wiki: website that allows the creation and editing of any number of interlinked web pages via
a web browser using a simplified markup language or a WYSIWYG text editor. Wikis are
typically powered by wiki software and are often used collaboratively by multiple users.

Word processor: computer application used for the production (including composition, editing,
formatting, and possibly printing) of any sort of printable material.

X

 X, X window system: computer software system and network protocol that provides a basis
for graphical user interfaces (GUIs) and rich input device capability for networked computers. It
creates a hardware abstraction layer where software is written to use a generalized set of
commands, allowing for device independence and reuse of programs on any computer that
implements X. X.Org serves as the canonical implementation of X, and is what KDE SC uses.

Y

Yakuake: drop-down terminal emulator based on KDE Konsole technology.

Z

Z-machine: virtual machine used by Infocom for its text adventure games. Kwest is a Z-
machine interpreter for KDE.

47

18. USEFUL LINKS

KDE: http://kde.org/

The KDE Project home page

KDE Techbase: http://techbase.kde.org/

The KDE Development wiki

KDE Userbase: http://userbase.kde.org/

The KDE User wiki

KDE Identity: https://identity.kde.org/

A single sign-in system used across several KDE websites

KDE Projects Page: https://projects.kde.org/

An overview of all projects within git.kde.org that are based on KDE technology

Qt Tutorials: http://doc.qt.nokia.com/

An extensive reference to Qt documentation

Git in 30 minutes: http://blip.tv/scott-chacon/git-in-30-minutes-4064151

 A useful video that introduces the concepts revolving around git

The Dot: http://dot.kde.org/

The official KDE community news outlet

Behind KDE: http://behindkde.org/

People Behind KDE interviews the people who work on KDE

Planet KDE: http://planetkde.org/

Aggregation of KDE community member blogs

The KDE Release Schedule: http://techbase.kde.org/Schedules

48

http://techbase.kde.org/Schedules/Release_Schedules_Guide

19. ABOUT THIS BOOK

Acknowledgments

A few people have really helped us make this book what it is so this book is incomplete
without a vote of thanks and a hug of appreciation to them. So , in no specific order:

Gunner, from Aspiration (http://www.aspirationtech.org/), inspired and made us all
smarter, as did the other teams at the sprint, namely OpenMRS, OpenStreetMap, and
Sahana Eden.

Nóirín Plunkett & Belinda Lopez provided amazing writing and editing resources for all of
us.

Adam from Floss Manuals was endlessly helpful, and the Booki team worked with us on
needed functionality and bug-fixing as the week and work went along.

We also thank the KDE community, who provided for us both an atmosphere in which we could
grow and thrive as contributors and human beings, but also for providing wonderful
documentation from which we could steal with wild abandon.

In particular, Ingo Malchow, Lydia Pintscher, and the KDE-Promo team gave us great help in our
time-pinch.

The Team

This book was first created at a three-day book sprint in October, 2011, at the Googleplex in
Mountain View, California. Carol Smith of Google Summer of Code fame got us the needed
funding to fly Karan, Supreet, and Rohan from India, and to house and feed us while we
worked. Rohan turned 21 during the sprint, and the group celebrated with an X-box party!

Rohan Garg - rohan16garg@gmail.com
Supreet Pal Singh - supreetpal@gmail.com
Karan Pratap Singh - wizard.karan@gmail.com
Valorie Zimmerman - valorie.zimmerman@gmail.com
Andy Oram - andyo@oreilly.com

KDE team at the Doc Sprint, October 2011

49

http://www.aspirationtech.org/

	KDE
	1. DO YOU NEED THIS BOOK?
	2. THE KDE PHILOSOPHY
	THE KDE COMMUNITY
	WHAT MAKES KDE SO EXCITING?
	IS IT DIFFICULT TO GET INVOLVED?
	THE KDE CODE OF CONDUCT
	THE VALUE OF BEING FREE AND OPEN SOURCE

	3. HOW TO GET HELP
	KDE MAILING LISTS
	KDE ON IRC
	KDE COMMUNITY PROBLEMS

	4. CHOOSING A PROJECT
	FRAMEWORKS
	PROGRAMS
	SUITES
	PLATFORMS
	WORKING WITH THE ORGANISATION

	5. THE QT FRAMEWORK
	ADVANTAGES OF QT

	6. USING GIT FOR KDE DEVELOPMENT
	GIT BASICS
	CLONING REPOSITORIES
	PULLING CHANGES
	WORKING WITH BRANCHES
	COMMITTING YOUR WORK
	SUBMITTING YOUR CHANGES INTO THE MAIN TREE
	TROUBLESHOOTING

	7. CHOOSING AN IDE
	QTCREATOR
	KDEVELOP
	ECLIPSE

	8. KDE APIS
	9. DOCUMENTATION
	10. PREREQUISITES
	SETTING UP THE ENVIRONMENT
	BUILD REQUIREMENTS

	11. OTHER WAYS TO BUILD THE KDE SC
	PROJECT NEON
	OPENSUSE

	12. SCRIPTED KDE BUILDS (KDESRC-BUILD)
	USEFUL LINKS FOR FINDING MODULES
	SETUP
	SETTING UP THE CONFIGURATION
	USEFUL KDESRC-BUILD COMMANDS
	BUILDING THE KDE SC
	RUNNING YOUR NEW KDE INSTALLATION

	KEEPING YOUR KDE INSTALLATION UP TO DATE
	13. TROUBLESHOOTING YOUR KDE BUILD
	14. READING BACKTRACES
	15. USEFUL TOOLS
	CORE TOOLS
	DEBUGGING AND ANALYSIS TOOLS
	DEVELOPMENT TOOLS
	HELPER TOOLS
	QUALITY ASSURANCE

	16. KDE DEVELOPER GUIDE FREQUENTLY ASKED QUESTIONS (FAQ)
	17. GENERAL GLOSSARY
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	18. USEFUL LINKS
	KDE: http://kde.org/
	KDE Techbase: http://techbase.kde.org/
	KDE Userbase: http://userbase.kde.org/
	KDE Identity: https://identity.kde.org/
	KDE Projects Page: https://projects.kde.org/
	Qt Tutorials: http://doc.qt.nokia.com/
	Git in 30 minutes: http://blip.tv/scott-chacon/git-in-30-minutes-4064151
	The Dot: http://dot.kde.org/
	Behind KDE: http://behindkde.org/
	Planet KDE: http://planetkde.org/
	The KDE Release Schedule: http://techbase.kde.org/Schedules

	19. ABOUT THIS BOOK
	Acknowledgments
	The Team

