OPENMRS
DEVELOPERS
GUIDE

Published : 2013-10-23
License : None

INTRODUCTION

1. WELCOME TO OPENMRS!

1 - WELCOME TO OPENMRS!

Thank you for your interest in the OpenMRS Community! We have
created this book for people who are curious about becoming a
developer using our software. This book serves as a quick guide for
you to learn more about our history, what OpenMRS does, and
understand more about how our community works.

If you find yourself eager to get started, we've also included some
practical advice on specific steps you can take right away to start
doing development with the OpenMRS platform.

As with much of free and open source software, what you're reading is
a "living" and evolving resource! This book was initially created over
just 3 days during the 2013 Google Summer of Code Doc Sprints held
at the Google campus in Mountain View, California, United States. The
event was a partnership between the Google Open Source Programs
Office, Aspiration, and FLOSS Manuals. T he initial authors of this book
represented a wide variety of OpenMRS community members &
developers:

Michael Downey (United States)

Eric Holscher (United States)

Suranga Nath Kasthurirathne (Sri Lanka)
Daniel Kayiwa (Uganda)

Jordan Kellerstrass (United States)
Elyse Voegeli (United States)

Photos used in this book are courtesy of Michael Downey and
OpenMRS], Limited.

We welcome your feedback on this book. We want to know if it helps
you get started as an OpenMRS developer, and what might be missing.
You can make comments directly in the online version of this book, or

send your feedback to community@openmrs.org. We're ready to use

your comments and input as we continuously update this resource.
Who should read this book

Several people who care about OpenMRS gathered in 2013 to create
this information resource for you. Who are you exactly? As this book's
authors, we assume you are a software developer who is new to
OpenMRS and someone who wants to learn more about the project
and community that is OpenMRS. You're someone who shares our
values and believes in our mission to improve health care delivery in
resource-constrained environments by coordinating a global
community to create and support this software. You're someone who
wants to become a member of our community.

Being new to OpenMRS can mean different things for different people:

e You might be new to software development.

e You might be new to free and open source software projects.
e You might be new to health IT.

e You might just be new to OpenMRS specifically.

Regardless of what you know or how much you need to know,
this book is designed for you!

WHAT YOU WILL GAIN
4

mailto:community@openmrs.org

This book is designed to give you the knowledge, tools, and confidence
to be an OpenMRS developer, no matter from which point you're
starting. We'll give you a background and brief history of OpenMRS.
We'll also talk about where we are now, and how we are working
together to change the world.

At the end of this book, you should:

e Understand how the OpenMRS community interacts and
communicates

e Have a development environment setup

e Understand the basics of the OpenMRS system

e Be able to troubleshoot OpenMRS with resources in the
community.

e Know where to go to get started with your first contributions to
the community.

By the end of this book, you'll be an OpenMRS developer,
contributor, and community member!

We want to know what you think about this book! After you take a
look, fill out our brief survey and let us know what you
think: http://go.openmrs.org/newdev-survey

http://www.google.com/url?q=http%3A%2F%2Fgo.openmrs.org%2Fnewdev-survey&sa=D&sntz=1&usg=AFQjCNF_MK0s7aI0ooalaavhUO9XPyoOLA

SAVING LIVES WITH
SOFTWARE

2. THE NEED FOR HEALTH IT
3. OUR RESPONSE
4. OPENMRS TODAY

2. THE NEED FOR HEALTH IT

Patient registration clerks using OpenMRS

Before you get started as a developer in the OpenMRS project, you
may find it useful to learn just a brief background of Health IT, what it
is, and why it matters.

For many years, Health IT applications have been created and used to
to effectively record and manage patient medical records.
Traditionally, patient data were recorded in paper records. However,
advances in the field of medicine are introducing the need to manage
very large amounts of data. Because paper medical records are
inherently passive, they can not evaluate or trigger meaningful actions
in response to their content. These challenges led to the development
of many different electronic medical record (EMR) systems. These
software tools promote meaningful use of patient health records.

Over the past several decades, several commercial and open source
EMR tools have been developed and implemented with varied levels of
success. OpenMRS is one of them!

IMPROVING HEALTH CARE QUALITY

EMRs can help improve the quality of healthcare in multiple ways.
Accuracy

The adoption of health [T can significantly reduce the potential for
medical errors. For example, an EMR can resolve incidents where hand-
written physician records are misinterpreted, and incorrect medication

provided to a patient.

Efficiency

EMR systems can improve the efficiency of data exchange between
multiple health [T applications. They can also prevent duplication of
services, thereby reducing chances of unnecessarily extending a
patient's hospital stay and maximizing use of hospital resources.

Better patient care

Data collected by an EMR application can be used to support decision-
making by health care professionals. Computerized guidelines can also
offer benefits to help clinicians and patients make better decisions,
thereby increasing the likelihood that health care decisions have a
positive outcome on the patient.

Understanding data about public health

The data captured via an EMR system can be used to explore data
used to create and monitor public health standards. For example,
vaccination records stored in an EMR can provide a deep insight into
the population of a state or country, and the health of those
vaccinated people over time.

Serving as a record of patient care

Patient data recorded in an EMR system can serve as a historical
record of patient care, and is usable both as a legal record as well as
means of evaluating the quality of health care provided. For example,
patient records in an EMR system that record health care activities at a
certain location can be transferred to another location when that
patient moves somewhere else. The information provided to the new
physician can be re-used to assess a patient's health condition.

CHALLENGES OF MAINTAINING EMR'S

The need for standardized clinical terminology

Both variation of in terms used by health care professionals, and a
general lack of standardization, have both had a significant impact on
the meaningful use of health IT applications. For example, a clinician in
one wing of the hospital might use the term "heart attack", while
another in a different department might use the term "myocardial
infarction" to refer to the same thing. T his lack of standardization
reduces the quality and usefulness of the data. The most common
way to handle this problem is use of standardized medical
terminology.

Data privacy, confidentiality and security issues

Given the significance of medical data, it is extremely important that
confidentiality of patient records are ensured at all times, and that
access to these records is strictly controlled and is only given to
relevant users. For example, different types of EMR users may only
require access to certain types of data or metadata, based on their
roles in the health care facility.

Challenges related to data entry

It's necessary to ensure that entering data into an EMR is efficient and
easy, so that providers are able to manage their time in a productive
manner. If a health care professional is overworked or distracted,
mistakes may occur that have adverse effects on a patient's health.

Integration of multiple health IT applications

Consistent with other efforts to ensure meaningful use of Health IT
systems, data stored in the EMR system should be easily exchangeable
to and from other medical applications. For example, the integration of
separate health applications into a regional or national health
Information Exchange (HIE) requires that an EMR is capable of easily
exchanging data with these external systems.

3 - OUR RESPONSE

AMPATH Clinic, Eldoret, Kenya, ca. 2004

SOLVING HEALTH IT CHALLENGES

OpenMRS was conceived in 2004 specifically to solve the problem of
managing health care information in the developing world. T oday,
connectivity and accessibility are critical pieces for health information
systems. In most countries, this information is still in silos and is not
accessible to those who need it—patients, clinicians, researchers,
epidemiologists, and planners. Based on best practices and institutional
knowledge from founding partners Regenstrief Institute & Partners In
Health, the goal of OpenMRS was to become a platform that could be
flexible enough for use in a variety of contexts in settings that had
very different requirements.

Both organizations knew they were doing similar work and wanted to
work together to build a common platform to save time and effort.
Late in 2004, Ben Wolfe from Regenstrief Institute became the first
full-time programmer working on OpenMRS, and Darius Jazayeri from
Partners In Health soon followed. For ease of work and other practical
reasons, they set up a project wiki and used an online instance of
Subversion for source control. Over time, word spread about the
project and because the materials were publicly available, other people
started contributing. The group didn't set out to create an open
source software project, but it quickly became evident that is what
had evolved.

10

OpenMRS first "went live" in February 2006 at the AMPATH project in
Western Kenya. Partners In Health turned on OpenMRS in Rwinkwavu,
Rwanda, in August of the same year. The South African Medical
Research Council first launched on the system at Richmond Hospital in
KwaZulu-Natal at the end of 2006. Since then, the rate of installation
and use of OpenMRS has continued to increase at a rapid pace. The
software has been downloaded in nearly every country on the planet
and is used in implementations from single traveling clinics to nation-
wide installations in hospitals and clinics throughout countries like
Rwanda.

WHAT WE CREATED

OpenMRS was designed as a patient-centric medical record application
that records the details of interactions between health care providers
and patients. Information is stored in a way that makes it easy to
summarize and analyze, minimizing the use of unstructured
information and maximizing the use of structured information. The
software gathers a patient’s treatment details into a single patient
chart. Having this complete patient history available in one place
empowers clinicians to make better decisions about care, while also
enabling a deeper analysis of patient health in order to draw more
meaningful conclusions on improving outcomes.

Technically speaking, OpenMRS is a Java-based web application capable
of running on laptops in small clinics or large servers for nation-wide
use. Our platform improves health outcomes by providing a timely,

comprehensive, and coordinated foundation for delivery of health care.

Add-on modules created by other users allow functionality to be easily
added or removed from the system. This modular architecture allows
users to customize OpenMRS to local health care needs, and reduces
the need for custom programming.

OpenMRS has served as a training platforms for developers since its
beginning. The project has participated in Google Summer of Code
(GSoC) since 2007, offering university students a chance to practice
software development as well as free and open source project
management skills. Many training programs have flourished throughout
the developing world, increasing the number of people with
technological and entrepreneurial skills to support Health IT
implementations. The community has assisted in facilitating training
programs in places like Rwanda that teach students to develop medical
information systems like OpenMRS.

BUILDING A COMMUNITY

Volunteers from around the world have created the OpenMRS
Community, a group of talented individuals from many different
backgrounds including technology, health care, and international
development. Together, we're building the world's most comprehensive
and flexible health technology platform to support the delivery of
health care in some of the world's most challenging environments.

m

Our community came together to specifically respond to the needs of
people actively building and managing health systems in the developing
world—places where AIDS, tuberculosis, and malaria afflict the lives of
millions. We may have started out to help a single clinic in Kenya, but in
the last few years OpenMRS has grown dramatically to be used in
thousands of research and clinical settings across the planet. We're
very proud of the innovators using OpenMRS to improve health care
worldwide. We have a large, active community of volunteer developers
and implementers and would be glad to have you join us!

Since its beginning, the number of individual and organizational
volunteers who participate in the OpenMRS community has seen
steady growth, tripling in size in the first part of this decade alone.
These individuals participate in various ways, from documentation and
bug reports, from training and providing support to other community
members. Recent releases of the OpenMRS core application
consistently had between 50 and 100 contributors. An even larger
vibrant ecosystem of add-on module developers provides infinite
customization to the system. Additionally, our collaborations with
other free and open source software projects such as Open Data Kit
and Pentaho have produced volunteer contributions to OpenMRS, and
employees of many commercial consulting organizations have
contributed countless hours to developing and improving OpenMRS.

We have also launched an independent not-for-profit organization to
help support the project's needs as it grows. The purpose of this
organization is to provide technical infrastructure and community
management, to assist collaboration and cooperation of project
volunteers throughout the world, and to provide training and support
to those who seek to implement OpenMRS as a key part of a medical
informatics strategy in clinics, hospitals, and government health
organizations.

The mission of the OpenMRS community is to improve health care
delivery in resource-constrained environments by working together as
a global community to create a robust, scalable, user-driven, open
source medical record system platform.

We envision a world where:

e Models exist to implement health IT in a way that decreases
costs, increases capacity, and lessens the disparities between
wealthy and resource-poor environments.

e Open standards enable people to use health IT systems to share
information and reduce effort.

e Concepts and processes can be easily shared to enable health
care professionals and patients to work together more
effectively.

e Medical software helps ease the work of health care providers
and administrators to provide them with the tools to improve
health outcomes all over the world

LOOKING FORWARD

12

From its humble beginnings as a solution to a problem in a small
African town, OpenMRS has become the largest health IT project on
the planet. Between 2006 and 2012, the installation of OpenMRS at
AMPATH in Kenya has recorded over 5 million heath care encounters
points of data for nearly 200,000 patients, helping to save untold
thousands of lives. Every day, similar stories are retold somewhere
else around the world with the assistance of thousands of volunteers.
The OpenMRS community continues to grow, and we are excited that
you're ready to joining us. Regardless of your background or interests,
there is a way for you to both contribute and gain from the work of
others in the OpenMRS community. In the next section we'll explore
OpenMRS around the world today and the many exciting prospects for
the future.

13

4 . OPENMRS TODAY

7 - Fhiand
<>, €) OpenMRS~ -~

| map | satellite
Morway

ATLAS U
[/
Canada 2P : ;
oy~ Ukrsire |
) Mangalia Q

a 5
o A North

South Kor

Pacific
Ocean

New

Southern WMapdata 2013 MapLink | Terms of Use | Reporta maperror

OpenMRS Atlas, October 2013

A SNAPSHOT

Today, the OpenMRS community is a widespread network of dedicated
individuals and groups focused on improving the state of medical care
in developing countries. As Health [T projects go, we're really big!

4,000,000 lines of code
70,000 downloads since 2010
169 countries

6 continents

As a developer, you are about to become a member of this worldwide
community dedicated to improving global health and saving lives. You'll
make health platforms that create global synergy and join a vibrant
and welcoming community. In this chapter, we'll explore who we are
and where we're going.

WHERE AND WHO WE ARE

As you can see in the map above, you can find OpenMRS is use all
around the world. For an interactive map built with data from some of

our implementation sites, visit: http://go.openmrs.org/newdev-atlas

Users, implementers, developers and contributors come from a wide
variety of backgrounds and interests. We collaborate, cooperate and
communicate in different ways, but we all gain from and share in the
work of others within our community.

With over 50 active projects, the OpenMRS developer community is a
vibrant and thriving group of dedicated people working from around
the world. The code we produce is used in hundreds of countries in
different ways. From research labs in the United States to mobile
clinics in Nigeria, OpenMRS acts as a platform for improving the health
of citizens in numerous countries.

VARIETIES OF USAGE

14

http://go.openmrs.org/newdev-atlas

Not only is OpenMRS used in many different places, it's also being used
to meet many different needs. In Kenya, it is used to support health
care delivery for hundreds of thousands of patients at a network of
over 50 clinics--some connected by typical networks, but many where
the connection requires offline synchronization to external storage
that can be physically transported between sites! Another NGO uses a
central OpenMRS server connected to clinics in multiple countries via
satellite Internet connections. In Malawi, creative individuals with a
talent for technology have created a mobile cart running OpenMRS
that physicians roll around their clinic, interacting with the system using
a touchscreen. In Rwanda, the national ministry of health has worked to
roll out a connected national health care system using OpenMRS. In the
United States, OpenMRS is used to track patients at large sporting
events, for mobile providers of health care to homeless people, and as
a personal health record that allows cancer patients to share
treatment and home health care information with caregivers and
family members.

THE FUTURE OF OPENMRS

Usability

At this stage, OpenMRS requires a fairly sophisticated team of
implementers to install and run. The most recent releases of OpenMRS
and current development is focused on creating "ready to go"
implementations that would allow more clinic sites to take advantage
of a sophisticated, scalable EMR without needing the expertise to
support and maintain it at a low level.

Data collection

OpenMRS is backed by a data model driven by a concept dictionary,
allowing for the collection of coded, reusable data without requiring
changes to the data model. Because the platform is not based on an
disease-centric data model, it can be adapted for use in tuberculosis,
malaria, or more general medical care.

Furthermore, we also promote the implementation of health data
standards which enable the convenient exchange of medical data.
OpenMRS supports the generation and consumption of HL7 messaging,
the most commonly used health data standard for exchanging
information. T his allows external systems to communicate and
exchange medical data in a more coherent manner.

Integrating with other systems

In line with recent efforts to improve the meaningful use of healthcare,
OpenMRS has actively pursued methods to enforce connectivity
between piecemeal health IT implementations. On these grounds, we
have encouraged the creation of modules which enable OpenMRS to
interact with other related systems.

Examples of our efforts include interoperability between OpenMRS and
OpenELIS (a Laboratory Information System) as well as between
OpenMRS to DHIS2 (District Health Information System 2) using the
SDMX-HD standard.

15

Additionally, OpenMRS is also involved in efforts to promote the
development of regional and national level Health Information
Exchanges (HIE). This initiative sees the collaboration between multiple
health applications to enable connectivity between piecemeal
implementations. In this capacity, OpenMRS been adopted as the
Shared Health Record (SHR) of the openHIE collaboration initiative
emerging to assist in the strengthening of national health information
exchanges for the underserved.

WHERE YOU FIT IN

We're constantly working with new technologies for stability and
performance. We strive to create the best software for health IT
around the world, and we want you to help us get there! Now that you
know all about who we are and what we're doing, the rest of the book
will help you understand the technical aspects of OpenMRS and how to
get started coding!

16

COMMUNITY

5. WORKING COOPERATIVELY
6. COLLABORATION TOOLS

17

5. WORKING COOPERATIVELY

OpenMRS design brainstorming session, October 2013

GETTING THINGS DONE

Regardless of whether or not you've participated in large software
development projects, if you're new to open source projects you may
be in for some surprises. The leadership of such projects is very "flat"
-- meaning that there isn't a lot of bureaucracy to deal with. On the
other hand, you'll find that as a developer, you're given great freedom
in finding interesting work and designing what gets built. The more
code and ideas you contribute, the more you'll become a leader in the
project.

"People should feel that their connection to a project, and influence over it,
is directly proportional to their contributions." - Karl Fogel, Producing Open
Source Software

Free and open source software projects offer an ideal setting for
coordination and crowd-sourcing of ideas and solutions. You should
always try to be open to what others might have to say about your
ideas and code -- great ideas don't necessarily have a single owner or
contributor! Listen to what others have to say, and pay attention to
what they're doing ... there's a lot to learn from everyone in the
OpenMRS community. Working together can be hugely beneficial to
everyone involved, and the sharing of ideas can yield rich results.

One of the easiest ways to build functionality in the OpenMRS
ecosystem is to use our modular architecture, which is covered in more
detail later in this book. Add-on modules allow you to try lots of
different ideas to solve problems. Modules also let you to build upon
the work of others through dependencies.

PLAY NICELY

18

The OpenMRS community has established a Code of Conduct. It's less
of a list of rules as much as it is some useful guidance about ways to
work in the community to help each other and be successful. You
should take a moment to read it and be familiar with the values
mentioned there, which include:

Be considerate

Be respectful

Be collaborative

When you disagree, consult others
When you are unsure, ask for help
Step down considerately

The Code of Conduct is available at: http://go.openmrs.org/newdev-

conduct

WORKING ASYNCHRONOUSLY

You'll find lots of people willing to help and give advice in the OpenMRS
community, but they might be located across the planet from you.
That means you should try to plan your work tasks to work
asynchronously. For a quick answer, searching Google or finding
someone to chat with on our IRC channel works well. However, it's
more likely that you'll need to write a question to one of our mailing
lists and end up waiting for an answer before you can continue. Having
a few tasks, issues, or projects going in parallel will help you to feel
more productive while you wait for answers or supplemental
information to get your work accomplished.

COLLABORATION VS. COOPERATION

People often speak of working collaboratively on a project when large
groups are involved. Before using these terms, it's important to
understand the differences between the

words collaboration and cooperation. When people collaborate, they
work closely together on a single goal. When people cooperate,
however, they coordinate their work on "selfish" but similar goals.
Collaboration works well in small groups, but cooperation allows large
software projects to support both individual and group goals.

Both types of work happen in the OpenMRS community. When looking
at the development of code for the OpenMRS core software, you'll
find lots of collaboration. Core developers need to frequently
communicate their ideas in detail to avoid causing problems for other
core developers. The same holds true when there are several
developers working on an OpenMRS add-on module.

Cooperation happens when looking at the different teams who
develop OpenMRS modules. Those teams are most successful when
they cooperate to prevent duplicate efforts, such as the creation of
two modules that provide the same functionality.

As an OpenMRS developer, you should plan to cooperate more than
you collaborate. This means you'll need to have a good understanding
of your personal or small group goals, and you'll need to communicate
more than you might be accustomed. This chapter will review some
tips on how best to do so.

FIND MENTORS

19

http://go.openmrs.org/newdev-conduct

Mentors are a great way for new developers to learn about
participating in the OpenMRS community. We're a very friendly group
of people, and there are plenty of people who, not too long ago, were
new to our project just like you. They can help you find interesting
work, answer questions about getting your environment set up, or help
connect you to other people in the community who share your
interests.

The easiest way to find a mentor is to simply write to our developers
mailing list with a short description of what interests you and some of
the questions you're having as you get started. If you get stuck or
have issues at any time, send an e-mail to our community management

team at community@openmrs.org and they will help answer any

questions you have.

The OpenMRS community also regularly participates in two formal
mentoring programs. Google Summer of Code (GSoC) is a summer (in
the northern hemisphere) program for university students age 18 and
over, offering a stipend to do development work on open source
projects such as OpenMRS. Applications generally open each spring.
The FOSS Outreach Program for Women (OPW) is a program for all
women age 18 and over that offers 3-month projects on development,
documentation, project management, and other tasks in open source
projects. Check out the web sites for both programs to learn more
about them.

FORMING QUESTIONS

One of the greatest things about a free and open source software
project is the large community of developers, contributors, and users
available to help you find answers to questions or inspire you.

Our project has been around many years, so there is a lot of reference
material available to understand why certain design decisions were
made. Some of this material is current and much of it can be useful
for a historical perspective. When developing questions to ask others
in the community, it's important to do some background research first
to make sure that there isn't already a readily-available answer.

COMMUNICATE PUBLICLY &
PRODUCTIVELY

In an open source project, all decisions happen in public. This means
you should avoid private conversations such as instant messages,
phone calls, and face-to-face meetings -- particularly when
brainstorming or making decisions about software design. We have
many different public tools available for our community to support
these conversations, and those tools are described in detail elsewhere
in this book. Ensuring that decisions are made in public venues
maximizes participation and exposes those decisions to as many
brilliant minds as possible. Try not to make decisions in private, or you
might miss out on interesting ideas.

Because we're a large project, much written communication gets
generated every day for other developers to read. To help, try to do
your part in maintaining a high signal-to-noise ratio on mailing lists or
other communication tools. Think before you post a message, and
make sure what you're writing adds value to the conversation.
Responses like "me too!" or "+1" are rarely productive.

AVOID BIKESHEDDING
20

mailto:community@openmrs.org

Although we encourage public discussions about our software design,
it's also important to avoid non-productive conversations about trivial
details. This type of anti-pattern best described by the concept of
bikeshedding, which gets its name from a 1960s book about
management. In the book, C. Northcote Parkinson described how it
might be often easier to get approval for an expensive nuclear power
plant than it could be to discuss what color to paint a bike shed.
Everyone feels they have a valid opinion of what color to paint the
bike shed, but only certain qualified people can comment on the design
of a reactor. Don't let yourself fall into this trap -- avoid these
wasteful conversations on trivial topics.

See http://go.openmrs.org/newdev-bikeshed for more information
about bikeshedding.

COMMIT EARLY AND OFTEN

One of the biggest (and often most difficult) lessons for open source
developers to learn is commit changes to your source code repository
early and often. Don't wait until you are finished with a project,or even
a single feature. In the past, OpenMRS used the Subversion version
control system which made this more painful. However, with DVCS
systems like GitHub in use now for most of our software, it's much
easier to get your work-in-progress published online as you go. There
are a few reasons to embrace this behavior.

First, by committing early you'll have more chance for others to
stumble across your work. They may have very valuable feedback or
ideas that you might want to consider to make your project more
useful. They may also have already written something very similar and
may prevent you from duplicating effort.

By committing your work often, you'll be protected in case of an
accidental data loss. You'll also be able to share your progress with
others, so they can get a better idea how much work remains. If you're
committing code regularly and a lot of work remains, you might find
someone to help you by squashing bugs or adding additional features.

Don't be afraid that your work appears "not ready". After all, it
probably isn't ready yet! In free & open source projects, one of the
most important practices is to share your work in progress. Make sure
you do your part.

SHARE & LICENSE YOUR WORK

We recommend naming your source code repository to include the
word "OpenMRS" so others can more easily find your work. For
example, if you're creating the FooBar module, you might name your
repository "openmrs-module-foobar". Similarly, when you're at a point
that you want to introduce your project or projects to others in the
community, we strongly encourage you to do so! The easiest way to
do this is to write a short description of your project along with links
to more information,

It's also important to consider what type of license your work will
have. If you don't provide a license with your software, it might remain
copyrighted and its use might still be restricted in ways which you may
not intend. (T he specifics of what would happen depend on the laws
where you are.)

21

http://go.openmrs.org/newdev-bikeshed

Many different free and open source software licenses exist, and
sometimes it can be hard to choose one. The creators of GitHub have

created http://go.openmrs.org/newdev-choose which is an easy way to

compare some of the popular FOSS licenses currently in use.

The OpenMRS core application is licensed under the Mozilla Public
License (MPL) version 2, along with an additional disclaimer of warranty
and limitation of liability (essentially a disclaimer for how the software
is used in health care settings). We encourage use of this license for
consistency across our community-developed software ecosystem and
license compatibility between add-on modules. However, you are free
to choose any license you wish. Just make sure to choose a license.

SUMMARY

In this section, we reviewed some of the unique aspects of working
together in an open source project like OpenMRS. In the next section,
we'll cover more details of the tools we use to do so. If any any time
you have questions about how best to work cooperatively, ask a more
senior member of the community for guidance, or write to a mailing
list with your questions. You'll find everyone very friendly and ready to
help you be productive!

22

http://go.openmrs.org/newdev-choose

6 . COLLABORATION TOOLS

2013 OpenMRS Implementers Meeting, Eldoret, Kenya

TOOLS AND TIPS

In the previous section, we examined some ways to work together in

the OpenMRS community. T his section will explore some of the tools

we use to do so. We have many different ways we can work with one
another. Our main collaborative tools include:

OpenMRS ID

OpenMRS Wiki

OpenMRS Answers (a question-and-answer service)
IRC

Mailing Lists

Weekly Meetings

Community Swim Lane

JIRA Issue Tracker

Git for version control

Most tools have specific functionality and purposes, and some tools
are better suited for certain things than others. For example, you
might have a specific question you want to ask, or are looking for a
project to collaborate on, or want to report a bug, or simply want to
say hello.

Let's look at some of these collaboration tools, their functionality, and
how to use them.

OPENMRS ID

In order to use most of our community tools, you'll need to create an
OpenMRS ID. (This isn't used for the OpenMRS software itself, but just
our collaboration tools.) When you create your OpenMRS ID, you'll
create a user profile with information about who you are. You can also
create a personal space on the OpenMRS Wiki where you can detail
your work and interests.

e Here's where you can sign up for your ID: https://id.openmrs.org/
e Learn more about the OpenMRS ID here: http://go.openmrs.org/id

OPENMRS WIKI

The vast majority of our documentation is stored on our wiki. If you
have a question or want to learn more about anything, the wiki is a
great place to turn. It contains both general and specific information
about the core system, add-on modules, our community, and other
project resources. Users, implementers, developers, contributors and
curious people use the wiki to find and share information.

You can search for information in the wiki using the search bar in the
top right corner, or by using the links on the left of the page to
navigate to the relevant section.

You can communicate directly with other community members by
leaving comments on wiki pages. You also directly edit the wiki if you
find an error, if it's out of date, if you've updated the project or if it
just doesn't have complete or accurate information. If you're not sure
or don't want to edit the page, feel free to leave your thoughts in a
comment. You should create a new wiki page when you start a new
project, or if you note that one doesn't exist (perhaps an interesting
discussion on the mailing list deserves its own page). When you do this,
make sure that the page doesn't already exist!

Always document what you're doing on the wiki- this helps everyone in
the community!

The OpenMRS Wiki is available at: http://wiki.openmrs.org/
OPENMRS ANSWERS

Another great resource for posting and searching for questions and
answers is OpenMRS Answers, our online question-and-answer site. If
you have specific problems or need help troubleshooting, this is a
great space to browse others' questions and answers, and seek out
help from other developers. You can answer questions on the site as
you learn more about OpenMRS and become an experienced
developer, earning points and badges along the way.

OpenMRS Answers can be found online at:

httgs:zzanswers.ogenmrs.org(
IRC

Internet Relay Chat is a form of real time chat and conferencing. IRC is
a great way to chat with other people in the OpenMRS community in
real-time. IRC is a good place to ask questions, get help with a
problem, discuss ideas, or just chat! Keep in mind that there are not
always people actively watching the IRC channel, so if your question or
comment isn't answered, it might be useful to send out an email to the
mailing list as well.

24

https://id.openmrs.org/
http://go.openmrs.org/id
http://wiki.openmrs.org/
https://answers.openmrs.org/

e We use the #0OpenMRS channel on the Freenode network. You
can visit our chat room directly from the web, or use an IRC
client. We recommend X-Chat or mIRC for Windows; X-Chat or
Irssi for Linux; and Textual, Colloquy or Adium for Mac.

o We keep up-to-date logs from our IRC channel on the OpenMRS
Wiki. They are fully searchable, and can be a great place to check
if you problem or question that someone might have already
addressed. View the logs here: http://go.openmrs.org/irc

e For more information on the IRC

channel: http://go.openmrs.org/irc
MAILING LISTS

We have several different mailing lists for groups of people within the
community. As a new developer, you should start by joining the main
developers mailing list. This is a great place for design discussions and
development troubleshooting, and can facilitate long term (as well as
short term) discussion among developers.

e You can subscribe to the list by sending a blank e-mail to
dev+subscribe@openmrs.org, or by updating your profile
at http://id.openmrs.org/.

o After subscribing, you can e-mail the list at dev@openmrs.org.

e There are other mailing lists you might be interested in, such as
the implementers mailing list. More information about this and
other lists are available online: http://go.openmrs.org/lists

e We also keep archives of all of our mailing lists. This is a great
resource to check if something has been discussed in the past.
You can view all the logs before 2012
at http://listarchives.openmrs.org/ and everything beyond that

date is available on each list's Google Groups page, such

as:http://go.openmrs.org/dev. The address for each list's archive

is included at the bottom of every message to the list.
MEET INGS

The OpenMRS community has regularly scheduled online meetings for
community members. The most relevant meetings for you as a new
developer are the weekly developer forum, the OpenMRS University
and the OpenMRS design forum, but feel free to explore other
meetings if they interest you!

o Our scheduled meetings are listed online
o.openmrs.org/newdev-weekl
e Dial in to the meeting from the United States by calling +1-888-
510-4073, or +1-213-992-5003 from other countries.
e Listen to live meeting audio via a web browser
o.openmrs.org/newdev-conf
e If prompted at any point, use the PIN: 24222

Weekly Developer Forum

Each week on Thursday (except holidays) from 10:00 AM - 1:00 AM
Eastern time (regardless of standard or daylight savings time),
OpenMRS developers get together to discuss specific topics. Anyone is
welcome to join, whether you want to discuss or just listen in.

e You can interactively access the audio and screen sharing
through the Adobe Connect meeting room
o.openmrs.org/newdev-omrsdf
e To learn more about the developer forum, and view past logs,
visit: http://go.openmrs.org/newdev-devmt

25

http://irc.freenode.net/
http://objavi.booki.cc/tmp/openmrsdevelopersguide-en-2013.10.23-19.33.00.pdf_rZeYF/_edit/www.xchat.org
http://go.openmrs.org/irc
http://go.openmrs.org/irc
http://id.openmrs.org/
http://go.openmrs.org/lists
http://listarchives.openmrs.org/
http://go.openmrs.org/dev
http://go.openmrs.org/newdev-weekly
http://go.openmrs.org/newdev-conf
http://go.openmrs.org/newdev-omrsdf
http://go.openmrs.org/newdev-devmtg

OpenMRS University

Each week on Wednesday (except holidays) from 9:00 AM - 10:00 PM
Eastern time (regardless of standard or daylight savings time), new
developers and implementers gather together to learn how to get
started with development and use of OpenMRS. The call combines a
planned teaching session with open Question and Answer discussions.
All past calls are available on our YouT ube channel.

e You can interactively access the audio and screen sharing
through the Adobe Connect meeting
room: http://go.openmrs.org/newdev-omrsu

e To learn more about OpenMRS university, and view past
logs: http://go.openmrs.org/newdev-univ

e You can watch previous videos our YouT ube
channel: http://go.openmrs.org/newdev-youtube

Weekly Design Forum

Each week on Wednesday (excluding holidays) from 2:00 PM -3:00 PM
Eastern time (regardless of standard or daylight savings time) developers gather
together to discuss design issues they may face. Showcasing your work during a
design forum ensures that it will get broad design output from a wider audience.

e You can interactively access the audio and screen sharing
through the Adobe Connect meeting room
o.openmrs.org/newdev-omrsd
e To learn more about the design forum, and view past logs,
visit: http://go.openmrs.org/newdev-design

COMMUNITY SWIM LANE

The 'swim lane' is an ongoing development effort dedicated to cleaning
up general bugs and feature requests that are highly voted (i.e.
important to implementations). The swim lane is always running, and
there's always an experienced developer present to help answer
questions. This is a great opportunity to work with other developers-
maybe even pair program- and learn how to work with OpenMRS and
create valuable bug fixes and features. Look for community
developers in IRC or send a note to the developers' mailing list.

To learn more about the community swim lane,
read: http://go.openmrs.org/newdev-swimlane

JIRA ISSUE TRACKER

JIRA is the software that tracks issues for the OpenMRS community. It
records issues and bugs that people have noticed and need to be
addressed, feature requests, as well as projects being worked on.
Developers, users and implementers all use JIRA to report, comment
and solve problems and create content.

You should use JIRA to create a new issue if you find a bug. Be sure to
include a clear description of how to recreate the error, the error
message if applicable, the version of OpenMRS you are using, the type
and version of the database you are using, any additional modules or
customizations, and any other relevant information. If applicable, copy
and paste the full Java stack trace. T he easiest way to report an
OpenMRS bug is by using the web form

o.openmrs.org/newdev-bug. If you'd like to be more specific,
you'll need to use the appropriate JIRA project to report a bug for the
OpenMRS core/trunk application, a specific add-on module, etc.

26

http://go.openmrs.org/newdev-omrsu
http://go.openmrs.org/newdev-univ
http://go.openmrs.org/newdev-youtube
http://go.openmrs.org/newdev-omrsd
http://go.openmrs.org/newdev-design
http://go.openmrs.org/newdev-swimlane
http://go.openmrs.org/newdev-bug

Bugs in JIRA have four specific phases of their life cycle. First, someone
notices a bug and creates a JIRA issue to report it. Second, the bug is
validated by other members of the community to makes sure enough
details have been included. Third, a person begins to code a patch for
the bug. Finally, upon the completion of the code, it goes through a
code review to make sure it is a valid fix.

You should also use JIRA to create a new issue if you start a new
project. As a developer, JIRA is a great place to find a first contribution.
The issue navigator also keeps track of introductory tickets that can
be a good place for a new developer to get started.

e More information about creating JIRA issues is available
o.openmrs.org/newdev-jira
e To access the JIRA issue navigator,
visit: http://go.openmrs.org/newdev-navigator
e To see a list of introductory OpenMRS issues on which you can
work, visit: http://go.openmrs.org/newdev-start

GIT

Git is a distributed version control system (DVCS) which allows many
developers to work on one project without having a specific network
connection. Most developers host their source code on GitHub, though
feel free to host yours wherever makes sense for your needs. We
recommend creating an account on GitHub so that you can clone
(copy) repositories (folders of source code) to your local machine. You
can then make changes on your local machine and push (send) them to
GitHub. Git can be very easy to use once you learn a few key
commands, and is a great collaborative tool for developers. It allows
you to write messages each time you commit (save) what you've done,
and keeps a log of these messages.

Writing good commit messages is an important part of letting other
developers know what you've been working on. Make sure that your
commit messages are specific and concise. Each commit should
address one ticket change. Don't combine multiple issues into one
commit. Make sure the commit contains the ticket number. When in
doubt, look at what other people have written in their commit
messages! Reading through commit messages from other developers is
also important to know what has been done and what is being done.

e For more in-depth training on how to use Git for OpenMRS,
see: http://go.openmrs.org/newdev-usinggit
e For more extensive Git training: http://go.openmrs.org/newdev-

gittutorial
e To learn more about OpenMRS coding conventions,

see: http://go.openmrs.org/newdev-conventions

e For more information about our
repositories: http://go.openmrs.org/newdev-repository

e You can view a list of modules on the module repository
page: http://go.openmrs.org/newdev-modlist

LET'S GET STARTED!

As you've read in this section, there are many tools to help you work
with other community members, so dive right in and introduce yourself
on IRC and create your personal wiki space. You now have the tools
you need to start working as a developer, so in the next section we'll
guide you through that process. We're excited to meet you. Welcome
to our community!

27

http://go.openmrs.org/newdev-jira
http://go.openmrs.org/newdev-navigator
http://go.openmrs.org/newdev-start
http://go.openmrs.org/newdev-usinggit
http://go.openmrs.org/newdev-gittutorial
http://go.openmrs.org/newdev-conventions
http://go.openmrs.org/newdev-repository
http://go.openmrs.org/newdev-modlist

TECHNOLOGY

7. ARCHITECTURE

8. DATA MODEL

9. DEVELOPMENT PROCESS
10. GET SET UP

28

7 » ARCHITECTURE

This chapter contains an in-depth view of the architecture of the
system. If you don't understand everything on the first reading, don't
fret! Understanding how the basic system fits together is the most
important thing you need for now.

TECHNICAL OVERVIEW

OpenMRS is a framework built upon Java and other related frameworks. It is based
on a modular architecture which consists of a core application and optional
modules which provide additional functionality to the core workflows.

The key architectural components of the OpenMRS core can be depicted
as follows:

'
Modules

o

s ™ =

Fi Ent g
orm Entry P

¢ jQuery ®

write less, do more. =

Jasper Reports HTML, JSP E:"

-

o

=

Clinical Summary

REST API
Compare Lists

BIRT Reporting

OpenMRS API

OpenMRS Data Model

An overview of OpenMRS

The backbone of OpenMRS lies in its core APL. The OpenMRS APl has
methods for all of the basic functions such as adding/updating a
patient, encounter, observation, etc. Methods which enable this
functionality are provided in service layer classes.

THE SOURCE CODE STRUCTURE

In OpenMRS framework and modules, there are different levels in the
code architecture. The OpenMRS source code is divided into three
main segments: the User Interface, Service, and Data Access layers.
This layering isolates various system responsibilities from one another,
to improve both system development and maintenance.

The Data Access layer

29

The Data Access layer is an abstraction layer from the actual data
model and its changes. It uses Hibernate as the Object Relational
mapping tool, and Liquibase to manage relational database changes in
a database-independent way.

The relationships between our domain objects and database tables are
mapped using a mixture of Hibernate annotations and XML mapping
files. The data access layer is exposed to the service layer through
interfaces, thereby shielding it from from implementation details such
as which object relational mapping tool is being used.

The Service layer

The Service layer is responsible for managing the business logic of the
application. It is built around the Spring framework. The OpenMRS
service layer classes make extensive use of the Spring framework for
a number of tasks including the following:

e Spring Aspect Oriented Programming (AOP) is used to provide
separate cross cutting functions (for example: authentication,

logging).

e Spring Dependency Injection (D) is used to provide dependencies
between components.

e Spring is used to manage transactions in between service layer
classes

User Interface layer

The User Interface layer for the legacy application is built upon Spring
MVC, Direct Web Remoting (DWR), JSP and JavaScript. DWR is used for
AJAX functionality and it provides the mapping between our Java
objects and methods to JavaScript objects and methods respectively.
JQuery is used to simplify the interactions with Javascript and the
browser. Spring MVC is used to provide the Model-View-Controller
design pattern. Our domain objects serve as the Model. We have a
mixture of controllers that subclass Spring's SimpleFormControllers
and those which use Spring's @Controller annotation. For the new
reference application user interface, we no longer use Spring MVC,
DWR or JSP, but heavily use Groovy, JQuery, AngularS, and more.

THE MODULAR ARCHITECTURE

At the heart of OpenMRS is a custom module framework which lets
you extend and modify the default functionality of the OpenMRS core
in accordance to your needs. Modules are also structured like the
OpenMRS core, and consist of user interface, data access and service
layers.

Some OpenMRS functionality is pulled out into modules instead of being written into

the core application. This allows users to upgrade the content in those modules
without having to wait for the next OpenMRS release. Currently, the only core module

used in OpenMRS is the Logic Module.

ASSOCIATED FRAMEWORKS AND
TECHNOLOGY STACKS

Hibernate

30

Hibernate is the Object Relational Mapper used by OpenMRS. It allows
users to describe the relationship between database tables and
domain objects using just xml or annotations.

Hibernate is also useful in managing dependencies between classes. As
an example, the concept domain in the data model consists of tables
named concept, concept_answer, concept_set and concept_name. It would
be very difficult to keep up with where to store each part of the
concept object and the relations between them if a user decides to
update each table individually. However, using Hibernate, developers
only need to concern themselves with the Concept object, and not the
tables behind that object. The concept.hbm.xml mapping file does the
work of knowing that the Concept object contains a collection of
ConceptSet objects, a collection of ConceptName objects, etc.

However, also note that Hibernate enforces lazy loading - it will not
load all associated objects until they are needed. For this reason,

you must either fetch/save/manipulate your object in the same session
(between one open/closeSession) or you must hydrate all object
collections in the object by calling the getters (getConceptAnswers,
getConceptNames, getSynonyms, etc).

Spring MVC

OpenMRS strongly subscribes to the Model-View-Controller pattern.
Most controllers included in the OpenMRS core will be
SimpleFormControllers and be placed in the

org.openmrs.web.controller package. However, some controllers have
been rewritten to use Spring 2.5+ annotations, and we recommend
that you use these in the future. The model is set up in the controller's
formBackingObject, and processed/saved in the
processFormSubmission and onSubmit methods. The jsp views are
placed in /web/WEB-INF/view.

Furthermore, not all files served by the webapp are run through
Spring. The /web/WEB-INF/web.xml file maps certain web page
extensions to the SpringController. All *form, *htm, and *list pages
are mapped. The SpringController then uses the mappings in the
openmrs-servlet.xml file to know which pages are mapping to which
Controller.

There are no .jsp pages that are accessed directly. If a page's url is
/admin/patients/index.htm, the jsp will actually reside in /web/WEB-
INF/view/admin/patients/index.jsp. T his is necessary so that we can do
the redirect with the SpringController. Because the file being accessed
ends with .htm, the SpringController is invoked by the web server.
When the SpringController sees the url, it simply replaces .htm with .jsp
and looks for the file in /web/WEB-INF/view/ according to the
jspViewResolver bean in openmrs-serviet.xml. If the page being
accessed was patient.form, the mapping in the urlMapping bean would
have told spring to use the PatientFormController and the
patientForm sp file.

AUTHENTICATION AND AUTHORIZATION

31

OpenMRS has a very granulated permissions system. Every action is
associated with a Privilege, which in turn can be grouped into Roles.
Examples of such privileges are "Add Patient", "Update Patient",
"Delete Patient", "Add Concept", "Update Concept", and more. A Role
can also point to a list of inherited roles. The role inherits all privileges
from that inherited role. In this way, hierarchies of roles are possible. A
User contains only a collection of Roles, not Privileges. These privileges
are enforced in the service layer using AOP annotations.

Build management

OpenMRS uses Apache Maven for build management of the OpenMRS
core and modules.

All information regarding the module being built, its dependencies on
other external modules and components, the build order, directories,
and required plug-ins are stored in the modules' pom.xml file.

Following release, these build artifacts are uploaded and maintained in
a maven repository manager. A maven repository manager is used for
this purpose due to a number of advantages that it provides. These
advantages include:

e Faster and more reliable builds

e Improved collaboration

e Component usage visibility

e Enforcement of component standards

The Maven Repository used by OpenMRS is SonaType Nexus, which
can be accessed at http://mavenrepo.openmrs.org/nexus/.

Artifacts maintained in the OpenMRS repository are:
Releases

e Maven built releases (1.8.0 and later)
e Ant built releases (15.0 up to 1.7.X)

Snapshots

e Maven development versions
Modules

e Module releases
3rd party artifacts

e Libraries not found in other Maven repositories (HAPI)
e Modified libraries (DWR, Hibernate, Liquibase, Simple XML)
o Custom Maven plugins (OpenMRS omod plugin)

SUMMARY

As you read the next section, keep in mind the important parts from
this chapter:

32

http://mavenrepo.openmrs.org/nexus/

OpenMRS consists of a core system, with a modular architecture
to extend its functionality.

There are three main layers to the system: User Interface,
Service Layer and Data Access Layer.

openMRS makes extensive use of a number of frameworks
including Spring and Hibernate.

We use Apache Maven for build management, JIRA for issue
management and Github for version control.

33

8 - DATA MODEL

(’)OpenMRS

MEDICAL RECORD SYSTEM

OpenMRS data model version 1.9. Details at http://go.openmrs.org/newdev-

data

OpenMRS invests continuous effort into shaping the OpenMRS data
model using knowledge and experience gathered from practical
experiences from the Regenstrief Institute, Partners in Health, and all of
our developmental partners spread across the world. The core of this
data model addresses the who, what, when, where, and how of medical
encounters. The core data model is divided into ten basic domains.

1. Concept: Concepts are defined and used to support strongly
coded data throughout the system

2. Encounter: Contains the meta-data regarding health care

providers interventions with a patient.

Form: User interface description for the various components.

Observation: This is where the actual health care information is

stored. There are many Observations per Encounter.

Order: Sequence actions should occur in.

Patient: Basic information about patients in this system.

User: Basic information about the people that use this system.

Person: Basic information about person in the system.

Business: Non-medical data used to administrate OpenMRS

10. Groups/Workflow: Workflows and Cohort data

~w

0N,

However, other domains may also be added to the data model via the
use of modules.

METADATA

Metadata is 'data about data'. In OpenMRS, metadata represents
system and descriptive data such as data types. Metadata are
generally referenced by clinical data, but do not represent any patient-
specific data.

Significant OpenMRS metadata types include:

34

http://go.openmrs.org/newdev-data

Drugs
EncounterRole
EncounterType
Concept

Form

Location
Program

Role

User

The OpenMRS source code comes with certain metadata included by
default. It is recommended that you do not edit/remove these.

Any request to modify/add metadata should be communicated to the
Meta-Data/T erminology lead, who is responsible for the oversight of
content required for key functionality of the OpenMRS platform.

35

9 - DEVELOPMENT PROCESS

SELECTING DEVELOPMENT WORK

Selecting your initial task depends on your personal preferences and
expertise. We recommend you work on at least a few introductory
tickets so that you can better understand our development workflow
when you start.

OpenMRS uses Atlassian's JIRA software for issue tracking purposes.
The OpenMRS JIRA installation can be found at

https://tickets.openmrs.org/.

JIRA allows you to search for suitable tickets using a number of criteria.
When choosing a ticket, identify one based on a programming language
or task that you are already familiar with to reducing the learning
curve involved.

You may also want to work on issues or limitations that you identified
yourself. First, create a ticket for this task in JIRA by clicking on the
"Create Issue" link. Next, wait for your issue to be reviewed by a core
OpenMRS developer. Begin work on the issue after it has been
assessed and discussed, and a core developer changes its status to
"Ready for Work".

If you are selecting an existing ticket to work on, please make sure
that:

e The issue is marked as "Ready for Work".

e The issue is not "In Progress" and claimed by someone else.
e The issue is not "blocked" waiting for the completion of another
issue.

BEGINNING WORK

We assume that you have already installed git on your computer, and
that you are able to access it using the command line, which is often
easier to interact with than IDE integration plugins.

Log in to JIRA with your OpenMRS credentials, and then claim the ticket
by clicking on the "Claim Issue" button. This will indicate to others that
you are working on this issue, so that they do not duplicate your work.
You should also identify the OpenMRS version affected by this
particular issue, and make sure to check out the appropriate version
of the source code to complete your task. For most cases, you will
need to check out the master branch. If you are not sure, just put a
comment on the ticket asking for guidance.

Use the following steps to check out source code onto your local
machine:

Step 1: If you don't have a GitHub account, create one here:
https://github.com/signup/free

Step 2: On GitHub, fork a project you want to work on. You may use
the tutorial http://help.github.com/fork-a-repo

Step 3: Clone the project repository from your fork

36

https://tickets.openmrs.org
https://github.com/signup/free
http://help.github.com/fork-a-repo

git clone https://github.com/{yourusername}/openmrs-core.git

Step 4: Now, go into the folder just created and set up the
"upstream” remote so you can eventually pull changes from the main
repository.

git remote add upstream https://github.com/openmrs/openmrs-core.git

USING GIT TO MANAGE YOUR WORK

You should use a separate branch for your development work on each
JIRA issue. T he following steps describe how to do so.

Step 1: Check out out a new local branch based on your master/tag
recommended for the fix and update it to the latest. The convention
is to name the branch after the JIRA issue key, for example, "T RUNK-
123"

To create a new branch, use the following commands:

git checkout -b TRUNK-123 master
git clean -df
git pull --rebase upstream master

Step 2: Push the branch to your fork:

git push origin TRUNK-123

Now you may begin work on your task on the newly created branch.

CODING CONVENTIONS

In addition to basic Java coding conventions, use the following steps to
ensure the quality of your code:

Managing deprecation:

e Deprecate public methods instead of changing/deleting them in
order to preserve backwards compatibility. We will delete all
deprecated methods when we release a new major version (e.g.,
from 1x to 2.0).

e Use both the @Deprecated annotation and the @deprecated
javadoc comment.

e The @deprecated javadoc annotation should point to the new
method that is replacing the current one.

e DAO methods do not have to go through a deprecation cycle.
They can be changed/deleted outright.

Security:

e To enforce security, avoiding XSS scripting by using
StringEscapeUtils.escapejavaScript() and
StringEscapeUtils.escapeHtml() to escape any user-generated
data in pages.

Code formatting style:

e OpenMRS uses Eclipse auto-formatting features for managing the
style of your code. These formatting rules are included in the
OpenMRSFormatter.xml file which can either be downloaded
from http://go.openmrs.org/newdev-formatter or the source
code checked out from GitHub. To apply these guidelines, use
the command Control+Alt+F.

Running the command mvn clean install will also enforce these
formatting stylistics on your code.

37

http://go.openmrs.org/newdev-formatter

QUALITY ASSURANCE EFFORTS

Meaningful use of comments: Provide enough comments to

cover the specific work you have undertaken in your code.

e Javadoc comments for each method: Provide a Javadoc
comment for each new method you introduce. Also, you should
update existing Javadoc comments to indicate any modifications
you have made.

e Unit testing: Write proper unit tests to cover each alternative
scenario introduced or modified by your changes. Your changes
to the code may inadvertently affect other program code as
well. Therefore, you should always be sure to run all the unit
tests to validate your work.

e Evaluating performance: In the event that your changes may

affect performance, we recommend that you evaluate its impact

using a profiler such as YourKit.

MAINTAINING YOUR CODE

To identify which files you have changed, run the following command:
git status

This will return a list of all new or modified files which you can review
to ensure that no unintentional changes made it into your commit.

Stage and commit your changes

As you work on your code, you may want to periodically stage and
commit your changes into your branch. To stage all changed and new
files into your commit, use the command:

git add -A

To pick only some files, use:

git add -i

Using this command displays a summary of changed and new files
along with a list of options which you can carry out. To stage selected
files, you need to choose the 'update' option. Choose the files which
you want to stage, marking them either by entering their file id (as
listed in the console). You may also specify a file range such as 1-3, or
simply enter * to select all. Confirm your selections by pressing the
ENTER key twice. Choose option 7' (quit) to complete the process.

Now these files are staged, and ready to be committed. To commit
your code into your branch, use the command:

git commit -m "TRUNK-123: Put change summary here (can be a ticket
title)”

Please remember to specify the current JIRA issue number in your
commit message. T he use of meaningful commit messages is
important.

PUSHING YOUR CODE AND REQUESTING A
REVIEW

38

After multiple iterations of making changes to your code and
committing them into your branch, push your code into your fork by
running the following commands.

Step 1: Update your branch to the latest code using the following
command:

git pull --rebase upstream master

Step 2: If you have made many commits, squash them into atomic
units of work. Most JIRA issues, especially bug fixes, should have one
commit only, making them easier to back-port. To do so, use the
instructions at: http://go.openmrs.org/newdev-squash

Step 3: Make sure all unit tests still pass by running:
mvn clean install

Step 4: Push your changes into your fork:
git push

Running this command will prompt you to authenticate into GitHub.
After doing so, it will upload the changes into your fork. You may now
visit your push on GitHub at a URL like
http://github.org/{yourgithubname}/{fork}/ where "fork" will be
something like "openmrs-core". Create a pull request using the create
pull request link on GitHub.

After you make your pull request, go to the relevant JIRA issue and
click the button to request a code review on that ticket. When doing
so, add a comment to the ticket with a link to your pull request. T his
will automatically schedule the ticket to be reviewed by a core
developer. Your code will not be reviewed until you follow this process
in JIRA.

ABOUT ATTRIBUTION

In OpenMRS, attribution is done via commit comments only. When a
committer applies a patch, the author or authors of the patch are
attributed within the commit comment itself. Attribution (either author
or contributing authors) will not be placed into the source code.
OpenMRS will graciously refuse contributions from volunteers who
require attribution of their work within source code.

ABOUT SUBVERSION AND OPENMRS

OpenMRS migrated from Subversion to GitHub in mid-2012. Before
that time, we used Subversion for version control for over seven
years. As a result, some of our older and infrequently-used modules
are still be hosted in our Subversion repository.

We encourage the hosting and migration of OpenMRS modules into
GitHub, although your module's source code may be hosted wherever
you prefer. If you are planning to work on a legacy module hosted in
Subversion, you will need appropriate knowledge to use this version
control system.

CODE REVIEW

39

http://go.openmrs.org/newdev-squash

A senior developer will review your code, and may suggest revisions.
You may be asked to make changes to your patch, and re-submit it
for review. Code review is an iterative process, and multiple review
cycles may be required. Additional changes made to your patch can be
built on the same branch used previously.

Review happens on GitHub, which allows your code to be evaluated by
multiple developers, and detailed review comments added.

In other cases, reviewing a ticket may involve significant discussion
which may lead to further refinement or redesign work. We believe
that healthy discussions around our code will contribute towards
identifying the best solution for a given task.

Ultimately, once all reviews have been completed, a patch will be
accepted and merged into the OpenMRS core system. After this, the
status of the JIRA issue will be changed to "Closed". Assuming your
task represents a change in the current workflow, you should update
the existing documentation to reflect these changes.

Closing a JIRA issue ends the official workflow, and now you are free to
begin work on other tickets. Sit back, relax, and find a new ticket!

REOPENING ISSUES

A closed JIRA issue might be reopened if it causes the current build to
fail, needs more work, or triggers a significant disruption of the
existing system.

If further improvements to your work are identified at a later stage,
these will be listed under a separate ticket which would be linked to
the previous one. In such a case, you are welcome to either claim or
ignore the new ticket. You may be contacted for your thoughts.

HOW TO GET HELP

General questions regarding the task you are working on can be asked
by adding comments to the issue on JIRA. Such comments are seen by
the issue's requester and other people who specifically are "watching"
the issue. You may also request help for your work by asking
questions using the community discussion channels discussed
previously in this book. The OpenMRS community is very extensive,
and greatly encourages and assists newcomers, so feel free to ask
constructive questions.

Check out the Support chapter of this book for more about how and
where to get help.

In the event that you feel that you are unable to complete a JIRA issue
that you have claimed, feel free to unassign yourself from the issue,
and select an different ticket to work on. Remember to put comments
about any progress made or findings you feel relevant for whoever
takes on the ticket.

SUGGESTING PROCESS CHANGES

Often, developers may wish to suggest changes to existing process.
These discussions usually begin on the OpenMRS developers mailing
list, and may be carried over to our weekly design meetings based on
the significance or impact of the suggested changes. Code reviews
performed on a given ticket may also result in the need for more
detailed design discussions. In this case, the discussion should be

40

moved over to a mailing list, and if necessary, into the weekly design
meetings.

PUBLICIZING YOUR WORK

We highly encourage developers to publicize their work so other
community members are able to learn from and re-use their work. You
should do so using one or more of these methods:

Make your work publicly accessible via GitHub.

Add appropriate documentation to the OpenMRS Wiki.

Email the OpenMRS developers mailing list.

Create and submit example videos to be published on the
OpenMRS YouT ube channel.

e Request time on in the weekly developers forum or university
calls to showcase your work.

REQUESTING TOOL LICENSES FOR YOUR
DEVELOPMENT WORK

OpenMRS encourages the use of open source tools for development
work. However, in certain cases, you may require licenses to use some
commercial tools.

OpenMRS provides contributor licenses to community members in
good standing who can demonstrate need for using these tools.
Licenses may be available for a number of tools including Intelli] IDEA
and the YourKit profiler, among others. If you are able to demonstrate
sufficient need to obtain such a license, please contact the OpenMRS
help desk at http://go.openmrs.org/helpdesk.

UNDERSTANDING OPENMRS RELEASES

What goes into a release?

Release timelines and supported features are largely decided upon by
the OpenMRS leadership group. Larger goals are

discussed, agreed upon, and documented under the OpenMRS
technical road-map, which is a set of predefined milestones for the
core OpenMRS platform and sponsored modules.

More detailed on the release process can be found
o.openmrs.org/newdev-release

The latest technical road-map can be found
o.openmrs.org/newdev-techma

The release process is managed by a release manager who is
responsible for getting the source code stabilized, packaged, and
released to the general public.

OPENMRS RELEASE TYPES

Alpha release

An alpha release is a feature-complete release which has not yet been
verified as bug free.

Beta release

41

http://go.openmrs.org/helpdesk
http://go.openmrs.org/newdev-release
http://go.openmrs.org/newdev-techmap

A beta release is made after obvious bugs found in the alpha release
have been fixed. Therefore, a beta release is ready to be tested by a
larger group of people.

Release candidate

A release candidate is only needed when non-trivial changes were
required during the beta phase. If the beta release was tested and no
significant changes were detected, developers may proceed directly to
a full release.

Major release

A major release is deemed tested and worthy of production
environments.

Maintenance release

A maintenance release contains bug fixes and security patches for use
between major releases, e.g., from 1.8.0 to 1.8.1. For maintenance
releases, no additional branches are created. Developers simply begin
where development work was left off in the current minor version
series release branch.

Release branch

A new release branch is created for each new major and minor release.
As an example, a new release branch is created when preparing to
release version 2.0.0, or version 13.0. However, when preparing to
release 1.3.1 (a maintenance-version increment), the release branch
created at the time of 13.0 is simply re-used.

CONTINUOUS INTEGRATION (Cl) FOR
OPENMRS

Continuous Integration Systems play an integral role in software
development. OpenMRS adopted the Cl tool Bamboo following our
shift into the agile development process.

The use of Cl has brought OpenMRS a number of benefits including:

e Automating the process to ensure that regression doesn't occur
with new code changes. Often a change in the APl or module
results in 'breaking' other dependent modules. A Cl System will
rebuild OpenMRS after a change is committed, thereby providing
information on how that change affects other dependent code.

e Providing an easily comprehensible user interface that provides
statistics/status of successful and failing tests

e Providing an easy method of monitoring work done on different
branches and modules.

e Allowing users to easily identify 'test fails only for me' vs. 'test
fails for everyone' scenarios.

The OpenMRS continuous integration tools can be accessed at

http://ci.openmrs.org/.
SUMMARY

You should now have an understanding of how to develop with
OpenMRS. In the next chapter we will put these skills to use by getting
your local development environment set up.

42

http://ci.openmrs.org

10 GET SET UP

—

~x

il

- ‘
«” OpenMRS

Now that we know all of the background and support information, let's
set up a basic install of OpenMRS on your system!

JAVA VERSION CHECK

Before we get started, check that you have the Java Development Kit
(DK) installed. Open up a console/terminal and enter:

javac -version
You should see output like this:

javac 1.7.0_45

Note: Java 1.6 or above is required to run OpenMRS. If you plan to use
the OpenMRS Software Development Kit (SDK) installation, Java 1.7 or
higher is required. (See below for more information on install options.)

If you do not have similar output to what is shown above, it means
that you are missing the JDK, so go ahead and install it. Below is a list
of external tutorials for installation, based on your platform.

http://www3.ntu.edu.sg/home/ehchua/programming/howto/|JDK_Howto.html# zz-

Windows 1

05 X http://www3.ntu.edu.sg/home/ehchua/programming/howto/|JDK_Howto.html# zz-
2.

Linux http://www.webupd8.org/2011/09/how-to-install-oracle-java-7 -jdk-in.html

CHOOSING AN APPROACH

There are several options for installation, so reach through each one
and decide which is best for you.

43

If you're getting started, we recommend trying the OpenMRS
SDK, which comes with a complete environment for using
OpenMRS. This means that you won't need to have much else on your
system installed other than Java. This is the easiest and quickest path
to getting OpenMRS running so that you can start developing modules.

The OpenMRS Standalone Application bundles OpenMRS with
Tomcat and MySQL which will be ready to run by simply running the
standalone JAR file. The Standalone does not bundle Maven, so you'll
need to run and install the Maven Module Archetype yourself to begin
creating new modules. If you're planning to work on a pre-existing
modaule, rather than creating a new module, then the Standalone may
be a good option for you.

If you want to develop code for the OpenMRS core application,
you should use a manual install. The SDK and Standalone only
include binary versions of the code, so getting your own development
environment set up is necessary if you want to be a core developer.

OPENMRS SDK INSTALLATION
Download and install

It's time to download your operating system's compatible version of
the OpenMRS SDK installer:

http://sourceforge.net/projects/openmrs/files/sdk/omrssdk-

1.0.6-windows-installer.exe/download

Windows

http://sourceforge.net/projects/openmrs/files/sdk/omrssdk-

0s X 1.0.6-osx-installer.app.zip/download

http://sourceforge.net/projects/openmrs/files/sdk/omrssdk-

Linux 1.0.6-linux-installer.run/download

NOTE: Unlike the manual setup which requires Java 1.6 and above, if
you decide to use the OpenMRS SDK, Java 1.7 or above is required.
Java 17 is required only for running the SDK installer, but not for
OpenMRS itself.

You will require administrative privileges on your operating system to
install the SDK, so make sure that you have those privileges associated
with your user account. Consult your operating system documentation
if necessary.

The SDK installation itself has very few steps. Once you've
downloaded and run the installer, wait for the installation to finish then
check to see if the SDK is working. To do so, open up a terminal
window or command line console and type the following:

omrs-version

The output it gives, should be similar of that below:

OMRS Version: 1.0.7
OMRS Home: /Applications/omrssdk-1.0.7
ORMS Scripts: /Applications/omrssdk-1.0.7/bin

OMRS Maven Home: /Applications/omrssdk-1.0.7/apache-maven
Apache Maven 3.1.0 (893ca28alda9d5f51ac03827af98bb730128f9f2; 2013-06-
27 19:15:32-0700)

Maven home: /Applications/omrssdk-1.0.7/apache-maven

Java version: 1.7.0_45, vendor: Oracle Corporation

Java home:
/Library/Java/JavaVirtualMachines/jdk1.7.0_45.jdk/Contents/Home/jre
Default locale: en_US, platform encoding: UTF-8

0S name: "mac os x", version: "10.8.5", arch: "x86_64", family:

" "

mac

44

http://sourceforge.net/projects/openmrs/files/sdk/omrssdk-1.0.6-windows-installer.exe/download
http://sourceforge.net/projects/openmrs/files/sdk/omrssdk-1.0.6-osx-installer.app.zip/download
http://sourceforge.net/projects/openmrs/files/sdk/omrssdk-1.0.6-linux-installer.run/download

If that is the case, you have successfully installed the OpenMRS SDK!

If you're having trouble, take a look at the SDK documenation on the
OpenMRS Wiki

at https://wiki.openmrs.org/display/docs/OpenMRS+SDK for more
assistance, or join the #O0penMRS IRC channel for help.

Run OpenMRS locally

Within the module that you just created, you can choose to run
OpenMRS with an Embedded Database to test the module you are
working on. This command will create an openmrs-project directory in
your current directory, and then launch the web server.

omrs-run

OpenMRS is now fully running on your computer at

http://localhost:8080/openmrs and can be tested. Log in with the following

credentials:

e User: admin
e Password: Admini23

Troubleshooting

If you have issues on the run phase, please make sure you are using

Java 17.If you have Java 1.7, but the omrs-version output is showing
your Java version as 1.6, you should do type the following to update

your JAVA_HOME directory:

export JAVA_HOME=$(/usr/libexec/java_home)
To verify, type:
echo $JAVA_HOME

You should see a response including feedback like jdk1.7.0_45.jdk.
Setting the JAVA_HOME environment variable should tell omrs-version
which version of Java to use.

More detailed documentation and troubleshooting help can be found
on the OpenMRS Wiki

at https://wiki.openmrs.org/display/docs/OpenMRS+SDK or try IRC for a

great place to ask for help!

STANDALONE SETUP

OpenMRS Standalone is a great way to evaluate and explore OpenMRS
capabilities. It may also be useful for small-scale production
environments. T he best place to learn about the standalone in full is
on the OpenMRS Wiki

at https://wikiopenmrs.org/display/docs/OpenMRS+Standalone but we'll

go through the set up here too.

Step 1: Download OpenMRS Standalone from
http://openmrs.org/download/ and unzip the downloaded file.

Step 2: Execute the JAR file in that folder. You can do this by typing
the following in the terminal/command line:

java -jar openmrs-standalone.jar

You can add the -commandline switch to make it run in full
command-line mode:

java -jar openmrs-standalone.jar -commandline

https://wiki.openmrs.org/display/docs/OpenMRS+SDK
http://localhost:8080/openmrs
https://wiki.openmrs.org/display/docs/OpenMRS+SDK
https://wiki.openmrs.org/display/docs/OpenMRS+Standalone
http://openmrs.org/download/

Be careful not to delete or rename folders after decompressing the
standalone package! They are used by the standalone JAR file and
need to be in their exact locations for things to work correctly.

Step 3: OpenMRS will configure itself the first time it is run. T he initial
setup installer will offer an option to install a demo concept dictionary,
the demo concepts plus demo patient data, or no demo data.

Step 4: After running the standalone jar, it will take you to the
OpenMRS log in web page where you can log in with the following
default username and password:

e Username: admin
e Password: Admin123 or test

The MySQL database has these credentials by default:

e MySQL username: openmrs

e MySQL password: Randomly generated during initial startup. Look
in the openmrs-runtime.properties file for the value
of connection.password.

You now have a local copy of OpenMRS running with both an
embedded database and a web server! At any time, you can upgrade
the standalone version. Check out the wiki for details on how to do

this: https://wiki.openmrs.org/display/docs/Upgrading+OpenMRS
MANUAL INSTALLATION

Set up MySQL

You must have a MySQL database set up for OpenMRS to be installed
successfully. To point your OpenMRS project to the database, should
either know your MySQL root password, or have a database schema
pre-configured and ready with a username and password to provide
during the OpenMRS setup. More information about installing and
setting up MySQL is available

at: http://dev.mysql.com/usingmysql/get_started.html

Set up Maven

Ensure that you have Maven installed and configured to support
building OpenMRS software. You can use the instructions at:
http://maven.apache.org/guides/getting-started/maven-in-five-
minutes.html

Set up Git

Ensure that you have installed and configured Git for source code
management. You can use one of the following relevant instruction

pages:

o http://help github.com/mac-set-up-git/
e http://help github.com/win-set-up-git/
e http://help github.com/linux-set-up-git/
e http://git-scm.com/book/en/Getting-Started-Installing-Git

OpenMRS developers generally agree that the command line is the best way to
interact with GIT, and we recommend that you set up your Git instance to be able to

do so.

Get the core source code

46

https://wiki.openmrs.org/display/docs/Upgrading+OpenMRS
http://dev.mysql.com/usingmysql/get_started.html
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://help.github.com/mac-set-up-git/
http://help.github.com/win-set-up-git/
http://help.github.com/linux-set-up-git/
http://help.github.com/linux-set-up-git/
http://git-scm.com/book/en/Getting-Started-Installing-Git

You must clone the openmrs-core repository on GitHub using your
Git client in order to start working on the project. In a directory that
you keep your code in, run the following:

git clone https://github.com/openmrs/openmrs-core.git

cd openmrs-core

You are now in the main working source code directory for OpenMRS.

More detailed steps are necessary if you are checking out OpenMRS
code to fix a particular ticket. Please refer to Git instructions listed
under the Development process on how to check out the required
source code.

Compiling your code

Compile the source code to be able to run it. First make sure that you
are in the top-level openmrs-core directory, then run:

mvn clean install

This will take a few minutes, while it downloads dependencies and
builds OpenMRS. Make sure you are connected to the Internet so

Maven can download the necessary dependencies from our
repositories.

Start the OpenMRS Webapp

To run the code, you have to start the webapp. The OpenMRS source
code contains a dependency to the Jetty server, so you can start the
application by running a simple command. to do so, complete the
following steps:

cd webapp

mvn jetty:run

Now you may access OpenMRS using the url http://localhost:8080/openmrs.

This should let you run a wizard which will guide you through setting
up your database. The Wizard will allow you to configure you instance
in a number of ways, and offers multiple options to help you point to
what datbase you want to use, and what data you wish to include by
default.

NOTE: If you run into issues with Out of Memory exceptions from
Java, try running:

export MAVEN_OPTS="-Xmx1024m -Xms1024m -XX:PermSize=256m -
XX:MaxPermSize=512m"

Then run Jetty again using the command above. This should increase
the effective memory of the running Java Virtual Machine, thereby
preventing the re-occurrence of this error.

CONCLUSION

You've now installed OpenMRS on your computer. You're ready to
learn about developing.

47

http://localhost:8080/openmrs

,.Open MRS Currently logged in asSuper User | Log out | My Profile | Helo

Jane Doe 0ld Identification Number: 1234
Q 112yrs(Jan 1, 1900)

BMI: 7 (Weight:, Height:) CD4: | Regimen:
J

‘ [Start v

J overview | | i | [visits | [Demographics | | Graphs | | Form Entry |

| Exit Patient from Care |

Not enrolled in any programs

Relationships

None

Add a new r

Allergies

None

Add Allergy.

Problem List
Problem Date Modifier ~ Comments
DIABETES MELLITUS 08/24/2012 History of ®
FRACTURE 08/24/2012 Rule Out ®

Add Problem

A patient dashboard in v 1.x

CASE STUDY

1. CREATING YOUR FIRST MODULE

49

11 - CREATING YOUR FIRST
MODULE

AMANI CLINIC CASE STUDY

To put this book in perspective, we'll walk through a fictional scenario
that reflects the real world process of identifying the need for,
designing, and building a module. Maintaining a modular architecture
allows developers to add and remove special functionality into
OpenMRS without having to modify the core project.

OVERVIEW

Let's suppose there is an established health clinic called Amani Clinic in
East Africa with a few staff members who are experienced in ICT and
medical informatics. They are very talented and very busy. You find
and read a ticket they created when they realized functionality for
adding, editing, saving, and listing of departments would be helpful to
their implementation. For the purposes of this task, we will define a
department as a hospital ward designed to perform a specific
purpose.

Someone has left a comment "T his would be a good module project!
on the ticket. You would love a new project to work on and happen to
have an interest in the larger issue of "departments" as they relate to
health informatics, so you are interested in taking up this task.

You send an email to Claudine, the clinic's lead informatics person and
ticket requester, expressing your interest and asking for some
clarification about how a user would interact with the proposed
Departments module. It is a good idea to touch base with the ticket
requesters or would-be users before starting a project whose scope is
likely more work and background than a straightforward bug-fix. While
you wait for a reply (you might not know where in the world Claudine
lives), you decide to catch up on some emails of your own. You
subscribed to the developers' mailing list a few days ago because you
want to stay informed about what other people are working on and
what issues they run into. You are excited about learning and watch a
few OpenMRS University recordings too.

Claudine is enthusiastic about you building this module for their clinic
and potentially many others. She invites you to keep in touch as you
go along. You have already worked your way through the Getting
Started chapter, so you get to work using the OpenMRS SDK to start
building your module.

You officially begin work on the module by clicking on the button to
'claim’ the ticket on the OpenMRS JIRA.

PRE-DEVELOPMENT ISSUES

While you may be ready to begin development right away, it is
important to take a step back and plan out your work. Will this be a
module which may be useful to all OpenMRS implementers, or
implementers of the Amani clinic only? This factor may decide where
the completed module will be hosted, and what kind of
requirements/standards you need to maintain.

50

It is best not to begin development until you have discussed your design plans with
other community developers, and made sure that your plans meet our requirements.

CREATING A BASIC MODULE

The OpenMRS SDK, as explained in the Getting Started chapter, allows
you to get started with a basic module in a few minutes. The omrs -
create-module command helps you execute the maven archetype, creating

a module directory with a framework of all the necessary module files by prompting
you for specific information.

However, in order to execute this command, we assume that you're
using JDK 1.7. No other pre-requisites are necessary.

To complete the omrs-create-module workflow, you will be prompted to enter the

following data:

e Module name: Enter the name of your module as you would like it
to appear. For this example use the name Hello World.

® "Do you want to add an admin page link (y/n)" : Yes, most likely you want
your module to be accessible from the OpenMRS admin page.

e "Do you want to add a service layer (y/n)": Yes, the default, creates a
module with a Service, Servicelmpl, DAO, HibernateDAO, POJO,
Hibernate mapping, liquibase.xml and sqldiff.xml, which will work together
to allow your module to access the OpenMRS database.

Entering this data and clicking <enter> will allow the OpenMRS SDK to
complete the module creation for you.

BASIC MODULE STRUCTURE

The omrs-create-module command creates the basic module structure

and components that it requires for use. Below is detailed overview of these
components, their structure and how they can be used.

51

e api - non-web-specific 'maven module' project

L]
o src
® main - Java files in the module that are not web-
specific. These will be compiled into a distributable
mymodule.jar
o target - folder built at runtime that will contain the
distributable jar file for the module
e omod
o src
= main

= java - web specific java files like controllers,
servlets, and filters
= resources -
s config.xml
*hbm.xml files
liquibasexml (or the old sqldiff.xml)
messages_*.properties files

modulesApplicationContext.xml
log4jxml - optional file to control logging

in your module
s webapp - jsp and html files included in the
omod

® portlets -

® resources - image, js, and css files that
your jsp files reference

o target - Contains the distributable omod file
e pom.xml - Maven build file. Delegates to pom.xml files in the
omod and api project

You can read more about module conventions at:

https://wiki.openmrs.org/display/docs/Module+Conventions
COMPILING YOUR MODULE

The basic module structure comes ready to be compiled and installed

onto the OpenMRS framework. To do this, navigate into the helloworld directory
and execute the following command:

mvn clean install

This creates a jar file, and then package that jar into a omod file. The
omod file is what you need to care about. It will be named
basicexample-1.0-SNAPSHOT.omod, and located under

the helloworld/omod/target/ folder. The omod file is the module binary,
which you will install into your OpenMRS application.

Executing the maven clean install command also runs any unit tests. If
you want to skip unit tests, use the following command instead:

mvn clean install -Dmaven.test.skip=true

TRY OUT YOUR MODULE

To install your module go to the Admin interface of OpenMRS.

52

https://wiki.openmrs.org/display/docs/Module+Servlets
https://wiki.openmrs.org/display/docs/Module+Config+File
https://wiki.openmrs.org/display/docs/Module+Hibernate+Mapping+Files
https://wiki.openmrs.org/display/docs/Module+liquibase+File
https://wiki.openmrs.org/display/docs/Module+sqldiff+File
https://wiki.openmrs.org/display/docs/Module+messages.properties+Files
https://wiki.openmrs.org/display/docs/Module+Application+Context+File
https://wiki.openmrs.org/display/docs/Module+Portlets
https://wiki.openmrs.org/display/docs/Module+Resources
https://wiki.openmrs.org/display/docs/Maven
https://wiki.openmrs.org/display/docs/Module+Conventions

1. Go to http://localhost:8080/openmrs/admin/index.htm.

2. On the right side, is a Modules section. Click the Manage
Modules link.

3. Near the top, you will see an Add or Upgrade Module button,
click it.

4. Under the Add Module heading, click the Browse... button.

5. In the file browser, select your omod file from
basicexample/omod/target/basicexmaple-1.0-
SNAPSHOT.omod

6. Click Upload.

7. You should now see your module under the Manage Modules
heading.

Another alternative would be to drop the compiled omod file into the
~/.0penMRS/modules folder. (Where ~/.OpenMRS is assumed to be the
Application Data Directory that the running openmrs is currently

using.) After putting the file in there simply restart OpenMRS and the
module will be loaded and started.

When you navigate back to the main Administration page, you should
see your module listed with a Basic Example Module heading, and a
single sub-option of Manage module.

CUSTOMIZE YOUR MODULE

Now that you have a basic module running, you want to add your own
features which would allow it to Hello World. Where to start?

Add a new field to your data model

Let's assume that your hello world task involves adding a new field
titled 'name’ to your data model.

In

department/api/src/main/java/org/openmrs/module/department/Department.java, add
new fields called name and description along with appropriate

getters and setters for them. The file should now look as follows:

public class Department extends BaseOpenmrsObject implements
Serializable {

private static final long serialVersionUID = 1L;

private Integer departmentld;

private String name;

private String description;

public Integer getDepartmentId() {

return departmentlId;

public void setDepartmentId(Integer departmentId) {
this.departmentId = departmentld;

@Override

public Integer getId() {
return getDepartmentId();

}

@Override

public void setId(Integer id) {
setDepartmentId(id);

}
public String getName() {
return name;

public void setName(String name) {
this.name = name;

public String getDescription() {
return description;

public void setDescription(String description) {
this.description = description;

}

}

53

http://localhost:8080/openmrs/admin/index.htm

Update Hibernate ORM file to work with your new field

In department/api/src/main/resources/Department.hbm.xml, uncomment
the central block of code add new properties as shown below
anywhere in the file. This lets Hibernate knows about the name and
description fields you just created. Your file should look like the
following:

<?xml version="1.0"7>

<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" >

<hibernate-mapping package="org.openmrs.module.department”>
<class name="Department”

table="${project.parent.artifactId}_Department">

<id name="departmentId” type="int" column="department_id"” unsaved-
value="0">

<generator class="native"” />

</id>

<discriminator column="department_id"” insert="false" />

<property name="uuid" type="java.lang.String" column="uuid"
length="38" unique="true" />

<property name="name" type="java.lang.String" column="name"
length="255" unique="true" />

<property name="description” type="java.lang.String”
column="description” length="255" />

</class>
</hibernate-mapping>

To reflect this change in the existing database, add an appropriate
change set into the department/api/src/main/resources/liquibase.xml. T his
is the code that actually changes the database for your project to
reflect your name field. A sample changeset will generally look like this:

<?xml version="1.0" encoding="UTF-8"7>

<databaseChangelLog

xmlns="http://www.liquibase.org/xml/ns/dbchangelog/1.9"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog/1.9

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-1.9.xsd">
<I--
See
http://www.liquibase.org/manual/home#available_database_refactorings
for a list of supported elements and attributes
-->
<changeSet author="yourname” id="20131010-1">
<comment>Create the department table</comment>
<createTable tableName="department_department”>
<column autoIncrement="true" name="department_id"

type="int">
<constraints primaryKey="true” nullable="false" />
</column>
<column name="name" type="varchar(255)" />
<column name="description” type="varchar(255)" />
<column name="uuid” type="char(38)" />
</createTable>
</changeSet>
</databaseChangelog>

Modify DAO and service layer classes support end to
end interactions

The Module Maven Archetype or SDK option to add a service layer
gives the module four files that make up the service layer: DAO (data
access interface), HibernateDAO, Service, and Servicelmpl. The
HibernateDAO is home to the sessionFactory, which actually connects
to the database. The Servicelmpl will instantiate a DAO and then the
module controller is free to instantiate a Service. Here is the code you
will add to each file:

DAO:

VX

* Database methods for {@link DepartmentService}
*/

public interface DepartmentDAO {

54

VET S

* @see
org.openmrs.module.department.api.DepartmentServicet#getAllDepartments()

*/

List<Department> getAllDepartments();

/*%

* @see
org.openmrs.module.department.api.DepartmentService#getDepartment(java.l

*/

Department getDepartment(Integer departmentId);

VETS

* @see
org.openmrs.module.department.api.DepartmentService#saveDepartment(org.of

*/

Department saveDepartment(Department department);

/*%

* @see
org.openmrs.module.department.api.DepartmentService#purgeDepartment(org.c

*/
void purgeDepartment(Department department);

HibernateDAO:

/x*

* The default implementation of {@link DepartmentDAO}.

*/

public class HibernateDepartmentDAO implements DepartmentDAO {
protected final Log log = LogFactory.getlLog(this.getClass());
private SessionFactory sessionFactory;

VET S
* @param sessionFactory the sessionFactory to set
*/

public void setSessionFactory(SessionFactory sessionFactory) {
this.sessionFactory = sessionFactory;

}

VEZ S

* @return the sessionFactory

*/

public SessionFactory getSessionFactory() {
return sessionFactory;

}

/*%x
* @see
org.openmrs.module.department.api.db.DepartmentDAO#getAllDepartments()
*/
@Override
public List<Department> getAllDepartments() {
return
sessionFactory.getCurrentSession().createCriteria(Department.class).list

3

VETS
* @see
org.openmrs.module.department.api.DepartmentService#getDepartment(java.l

*/

@Override

public Department getDepartment(Integer departmentId) {

return (Department)
sessionFactory.getCurrentSession().get(Department.class, departmentId);

}

/x*
* @see
org.openmrs.module.department.api.db.DepartmentDAO#saveDepartment(org.op

*/

@Override

public Department saveDepartment(Department department) {
sessionFactory.getCurrentSession().save(department);
return department;

3

VETS
* @see
org.openmrs.module.department.api.db.DepartmentDAO#purgeDepartment(org.of

*/
@Override
public void purgeDepartment(Department department) {
sessionFactory.getCurrentSession() .delete(department);
}
3

Service:

55

/*%
* The service for managing departments.
x/
@Transactional
public interface DepartmentService extends OpenmrsService {
VEZ S
* Gets a list of departments.
*
* @return the department list
*/
@Transactional(readOnly = true)
List<Department> getAllDepartments();
VEZ S
* Gets a department for a given id.
*
* @param id the department id
* @return the department with the given id
*/
@Transactional(readOnly = true)
Department getDepartment(Integer departmentId);
VETS
* Saves a new or existing department
*
* @param department the department to save.
* @return the saved department
*/
Department saveDepartment(Department department);
VETS
* Deletes a department from the database.
*
* @param department the department to delete.
*/
void purgeDepartment(Department department);

3

Servicelmpl:

VETS
* It is a default implementation of {@link DepartmentService}.
*/
public class DepartmentServiceImpl extends BaseOpenmrsService
implements DepartmentService {
protected final Log log = LogFactory.getlLog(this.getClass());
private DepartmentDAO dao;
VEZ S
* @param dao the dao to set
*/
public void setDao(DepartmentDAO dao) {
this.dao = dao;

}

[**x

* @return the dao

*/

public DepartmentDAO getDao() {
return dao;

}

[*x
* @see
org.openmrs.module.department.api.DepartmentServicet#getAllDepartments()
*/
@Override
public List<Department> getAllDepartments() {
return dao.getAllDepartments();
}

VEZ S
* @see
org.openmrs.module.department.api.DepartmentService#getDepartment(java.l

*/
@Override
public Department getDepartment(Integer departmentId) {
return dao.getDepartment(departmentId);

VETS
* @see
org.openmrs.module.department.api.DepartmentService#tsaveDepartment(org.of

*/
@Override

public Department saveDepartment(Department department) {
return dao.saveDepartment(department);

}

/x*
* @see
org.openmrs.module.department.api.DepartmentService#purgeDepartment(org.c

*/

56

@Override
public void purgeDepartment(Department department) {
dao.purgeDepartment(department);

CODING CONVENTIONS AND STANDARDS

When editing the DAO and service layer classes, don't forget to ensure
that your code adheres to our general standards. Refer to the
'Development process' chapter, which will give you detailed instructions
on how to ensure this.

Also, don't forget to add Junit Unit tests to validate that the methods
you introduced behave exactly as they should.

Creating the web interface for your module

To make these changes to be accessible to users, you need to make
changes to the module controller. You will also need to introduce a

new file named addDepartment.jsp into the /omod/src/main/webapp directory. This
will contain the jsp page that lets you edit your name. The general contents of this
class will be as follows:

<form method="post">
<fieldset>
<table>
<tr>
<td><openmrs:message code="general.name"/></td>
<td>
<spring:bind path="department.name">
<input type="text"” name="name"” value="${status.value}"”
size="35" />
<c:if test="${status.errorMessage != ''}">${status.errorMessage}</c:if>
</spring:bind>
</td>
</tr>
<tr>
<td valign="top"><openmrs:message
code="general.description”/></td>
<td valign="top">
<spring:bind path="department.description”>
<textarea name="description” rows="3" cols="40"
onkeypress="return forceMaxLength(this, 1024);"
>${status.value}</textarea>
<c:if test="${status.errorMessage != ''}">${status.errorMessage}</c:if>
</spring:bind>
</td>
</tr>
</table>

<input type="submit” value="<openmrs:message code="department.save"/>"
name="save">
</fieldset>
</form>

Once the JSP is complete, don't forget to modify the controller to
point to this. It is also useful to add validations to asses user input
when the controller is triggered.

@RequestMapping(value = "/module/department/departmentForm.form”,
method = RequestMethod.POST)
public String submitDepartment(WebRequest request, HttpSession

httpSession, ModelMap model,

@RequestParam(required = false,
value = "action”) String action,

@ModelAttribute("department”)
Department department, BindingResult errors) {

MessageSourceService mss = Context.getMessageSourceService();
DepartmentService departmentService =
Context.getService(DepartmentService.class);
if (!Context.isAuthenticated()) {
errors.reject("department.auth.required”);
} else if
(mss.getMessage("department.purgeDepartment”) .equals(action)) {
try {

57

departmentService.purgeDepartment(department);

httpSession.setAttribute(WebConstants.OPENMRS_MSG_ATTR,
"department.delete.success");
return "redirect:departmentList.list”;

catch (Exception ex) {

httpSession.setAttribute (WebConstants.OPENMRS_ERROR_ATTR,
"department.delete.failure");

log.error("Failed to delete department”, ex);

return "redirect:departmentForm.form?departmentId=" +
request.getParameter("departmentId”);

3}
} else {
departmentService.saveDepartment(department);
httpSession.setAttribute(WebConstants.OPENMRS_MSG_ATTR,
"department.saved”);

}

return "redirect:departmentList.list"”;

Now that your module is completed, it is the perfect time to go ahead
and test it. First test it yourself to make sure that there are no
obvious mistakes before asking a target end user to try it out. The
end user's feedback may result in further design discussions or
reviews. Once these have been completed, the module can be
implemented at the clinic, and also made available publicly. Refer to the
guidelines specified in the 'Development Process' chapter to find out
the best way to do this.

Once your module is released, you may think that your work is over.

However, there is no such thing. As health systems, requirements, and technology
change, so must the software.This makes medical informatics a viable career option,
but does not mean you are responsible for maintaining Hello World for the rest of its
life with OpenMRS.

SHARING YOUR MODULE

When done with developing and testing your module, you can release it
for developers by deploying to the Maven repository using instructions
o.openmrs.org/newdev-taggin

For end users, you can upload it to the module repository

http://modules.openmrs.org which is available to everyone. Read more

about our rules and regulations for it

here: http://go.openmrs.org/newdev-modrepo

58

http://go.openmrs.org/newdev-tagging
http://modules.openmrs.org
http://go.openmrs.org/newdev-modrepo

WHAT'S NEXT?

12. GET INVOLVED
13. GET SUPPORT
14. DEVELOPER CHECKLIST

59

12. GET INVOLVED

The OpenMRS Community, circa 2013

Now that you understand the basics of OpenMRS development, you
can do a lot or you can do a little. How deep you dive into the
OpenMRS community is up to you! Keep in mind that someone may
want to pick up your work where you leave off, so be sure to
document everything as you go along.

FINDING JIRA ISSUES

If you don't know where to begin putting your development skills to
good use, start with JIRA's Issue Navigator to view Introductory Issues.
These are Ready for Work and have been deemed the right amount of
complexity for a new OpenMRS developer.

Read http://go.openmrs.org/newdev-start for introductory issues and
other tips on getting started working with JIRA issues.

COMMUNITY DEVELOPMENT SWIM LANE

The "Community Development” swim lane has two objectives. The first
is working on high-priority bugs and long-standing issues, and the
second is providing accessible mentorship to new developers. There
are always experienced developers leading this swim lane. T his
leadership role entails serving as a mentor to new developers, including
guidance on anything from which introductory issues the new
developer should choose to helping with troubleshooting as you work
on those issues, or providing tips for your own OpenMRS-related
projects. To help you find this person, read our Wiki page on the
community development swim lane and calendar
o.openmrs.org/newdev-swimlane.

MENTORING PROGRAMS

60

http://go.openmrs.org/newdev-start
http://go.openmrs.org/newdev-swimlane

See if there is an official mentoring program coming up. OpenMRS is
one of many open source projects that has successfully participated in
Google Summer of Code for students and FOSS Outreach Program for
Women. Prospective interns for these programs apply to participate
via project proposal. OpenMRS provides many suggestions for possible
project proposals. Successful project proposals are matched with an
experienced community mentor who will serve as a guide for the
project through out the program timeline, usually the summer. For
more information, visit these programs' web sites.

e Google Summer of Code (GSoC): http://www.google-
melange.com/
e Outreach Program for Women

(OPW): https://wikignome.org/OutreachProgramForWomen
COMMUNITY GATHERINGS ONLINE

The weekly online Developers Forum and OpenMRS University meetings
are great places to learn, as well as share. When you make significant
progress on a project, volunteer to present your work on one of these
calls. That may seem scary now, but you are among friends. Hopefully
you are working on a project that will be used in implementations.
That makes it interesting to others in the community.

For more information on these meetings,

see: http://go.openmrs.org/newdev-weekly
COMMUNITY GATHERINGS AROUND THE WORLD

The annual Implementers Meeting began in 2006 as a way to bring
members of the community together during a dedicated amount of
time to collaborate, share implementation experiences, and find ways
to improve OpenMRS. Developers are welcome to attend and may
even apply for financial assistance.

People from OpenMRS regularly participate in other open source and
eHealth conferences as well, and even organize their own local meet up
events such as hackathons. These can be great opportunities to meet
other members of the community, talk about OpenMRS, and form
lasting relationships.

These events are usually announced on the OpenMRS developers
mailing lists, so be sure you're subscribed to learn about them and
share your own.

FEEDBACK

One simple way for you to contribute right now is to give us feedback
on this book! Anything you have to say will be helpful to us, so please
fill out our brief survey: http:/go.openmrs.org/newdev-survey.

61

https://wiki.gnome.org/OutreachProgramForWomen
http://go.openmrs.org/newdev-weekly
http://www.google.com/url?q=http%3A%2F%2Fgo.openmrs.org%2Fnewdev-survey&sa=D&sntz=1&usg=AFQjCNF_MK0s7aI0ooalaavhUO9XPyoOLA

13 - GET SUPPORT

ASKING QUESTIONS

There are many places to go when you get stuck. The most important
thing is not to get discouraged. The OpenMRS community is here to
help each other, and tomorrow you may be the one helping a new
developer with the same problem.

You can help experienced developers help you by asking "smart
questions", which are informed by the your attempts to solve the
problem on your own, include adequate context of the problem, and a
contain a precise description of your problem.

Read http://go.openmrs.org/newdev-smart for more about asking

"smart questions".

Be sure to check if your question has already been answered. T his
section will help you navigate the OpenMRS resources to find answers.
After a good faith effort of searching, reach out to the community! If
your question has anything to do with OpenMRS, ask it in a public
forum.

IRC tips

1. You can generally just ask a question for any one to answer. But
if you wait for a while without getting a response, you may pick
a person in the list and mention their "nickname" so that they
are notified. IRC pro-tip: With most IRC clients, just start typing
the nickname and use the Tab key to auto complete.

2. The IRC channel is where daily 15 minute like "Scrum" meetings
take place. Developers working on a sprint will provide quick
updates on their progress and anything blocking their progress.
When a scrum meeting is going on, you should hold your
questions until it ends. If you have been working on anything, or
even blocked, feel free to also participate in the scrums because
they are open to everyone.

3. Don't worry about saving a helpful IRC conversation. The channel
is logged automatically, so just make a note of the day and time
of your helpful conversation and revisit it even after leaving the
chat room. You can find the logs at: http://go.openmrs.or

Weekly meetings

OpenMRS community members meet online during the weekly
OpenMRS developers forum. T his forum is a fine opportunity to learn
more about the project, share experiences, give feedback about where
they want the future of OpenMRS to be, and more. You can see more
details on calls and topics on the upcoming topics wiki page.
Periodically, the meeting will be open to Q&A with experienced
developers. This is a great place to get questions answered!

OpenMRS Answers

62

http://go.openmrs.org/newdev-smart
http://go.openmrs.org/irc

Our Q&A site at http://answers.openmrs.org/ is used for clearly

answerable questions that have anything to do with OpenMRS. If your
question is more likely to start a discussion than get a clear answer,
post it to the Developers Mailing List instead. If your question is
actually a bug or feature request, use JIRA. Also don't use OpenMRS
Answers if your question is unrelated to OpenMRS, or directed to a
single person.

Mailing lists

If you decide a mailing list is the best forum for your question, there
are a few things to always include.

1. Use a descriptive subject header. "PLEASE HELP ME"" for
example, is not descriptive enough.

2. Introduce yourself and don't apologize for being a beginner. The
community welcomes you.

3. Describe the context of the issue you're having or the question
you would like to have answered. What were you doing when you
ran into this problem? What troubleshooting have you already
tried unsuccessfully? What is your goal?

4. Include your exact error message if there is one.

5. Indicate which version of OpenMRS you are using.

6. As a general rule, be as precise and informative.

If the answer you receive doesn't make sense, repeat this process for
your follow up questions. Sometimes a web-search of the terms you
don't understand is all the clarification you will need. Maybe the person
who responded to your email is conveniently hanging out on IRC.
Otherwise, proceed confidently in asking for more information.

FINDING ANSWERS WITH REFERENCE
MATERIAL

Error messages

Most likely someone has gotten this error before you. Some error
questions have been posted and answered on OpenMRS Answers and
others on a mailing list. If you know your error has to do with a certain
thing, such as memory, check the wiki too. Some errors have earned
their own pages there. If you're not sure where to look first,
http://search.openmrs.org/ provides a custom Google search engine for
multiple OpenMRS sources.

e For mail sent between 2008-2010, see:

http://listarchives.openmrs.org/

e For mail sent since 2010, use each group's web interface, such as:
http://go.openmrs.org/dev

A comprehensive list of OpenMRS mailing lists to search or subscribe
to can be found at: http://go.openmrs.org/lists

Questions about OpenMRS usage

63

http://answers.openmrs.org
http://search.openmrs.org
http://listarchives.openmrs.org
http://go.openmrs.org/dev
http://go.openmrs.org/lists

When you need a better understanding of some aspect of OpenMRS to
move forward with your task, search the OpenMRS wiki topics on
http://wiki.openmrs.org/. If you find the wiki page you need and it is
unclear or incomplete, leave a friendly comment asking for more
information and then join on the IRC channel #OpenMRS to see if
someone can help clarify or point you to additional information. You
can also check if there are any helpful videos on our YouT ube channel.
If you get an answer that clarifies the wiki, feel free to go back and
add it to the wiki page to help the next person who has that question.

User stories and workflows

When you need guidance related to how an implementer will use your
project, you should try to ask the implementer(s) directly. The users
most interested in your project may likely be "Watchers" of the JIRA
issue you're working on. Alternatively, if you need to reach a larger
audience of OpenMRS implementers, you can find them on the
implementers mailing list. Depending on your project, it may be helpful
to subscribe to this list. You can do so at http://go.openmrs.org/lists.

Designing forums

Weekly design meetings are held for discussing design issues related to
the core OpenMRS API, data model, modules or anything else that
needs design. Module and patch developers may request a design
review in order to start development or receive feedback after
development has been started or completed. We also encourage that
all reasoning behind any design decision is carefully documented for
future assessment.

It is important for developers understand how their project fits within
the larger OpenMRS data model.

Summary

T his section is a map of when and where to go for help, and how to
get the most helpful feedback. Try to solve the problem on your own
first. Regardless of your success, this little bit of research will help you
ask more informed questions. When you can't find an answer in the
OpenMRS documentation or on the web, you're ready to reach out for
help. Start with IRC. From there, if you have a straightforward question
in mind, you probably want to ask on OpenMRS Answers. If you can
anticipate a variety of opinions or may have stumbled upon an
unexplored OpenMRS issue, send an email to our developers mailing
list. If your question has more to do with your users, find them on the
ticket or on our implementers mailing list.

Use your judgement. Choosing the right place for your question is
helpful in getting you the information you need, not a strict rule.

64

http://wiki.openmrs.org
http://go.openmrs.org/lists

14 DEVELOPER CHECKLIST

The OpenMRS community actively encourages members to grow as
contributors by taking up more advanced roles within the community.
Many of our dedicated volunteers began by working on introductory
tickets, and went on to become senior contributors within the
community, working on a wide range of tasks from core OpenMRS
development to working on individual implementations.

The following checklist signifies potential milestones which a developer
may follow. Note that these are very generic guidelines, with no strict
timelines or strict order of precedence. Rather, they serve as
inspiration for potential options available to all community members.

OpenMRS Developer Checklist

Join the OpenMRS community. Get an OpenMRS ID. Introduce
yourself to others. Begin contributing to introductory tickets.

Gain more knowledge of the OpenMRS, and begin to participate
in mailing list discussions.

Begin to suggest potential improvements to the existing code
base.

Identify a module or field you're motivated to work on, and begin
[i to familiarize yourself in this field by building relationships with
other interested people.

[J i Becomes a sprint leader or project owner.

Volunteer to mentor others. You may mentor students who
[: participate in various internship programs, or other developers
working on implementation specific features.

Work directly with associated implementations in need of your
expertise.

Become a full-time community volunteer who is supported by an
affiliated institution or an implementation.

Link your interest in OpenMRS with other related medical
[: applications, systems, tools, API's, or frameworks; and become a
champion for collaboration and mutual support.

65

APPENDICES

15. APPENDIX A: LEARNING RESOURCES
16. APPENDIX B: OPENMRS GLOSSARY
17. APPENDIX C: TROUBLESHOOTING

66

15 - APPENDIX A: LEARNING
RESOURCES

We've compiled these following list to give you more resources for
some of the tools, technologies, and other aspects of working on
OpenMRS. If you find a resource you'd like to add to this list, please let
us know using comments or send an e-mail to
community@openmrs.org.

Angular]S: http://docs.angularjs.org/misc/started
Bikeshedding: http://bikeshed.com/
CSS: http://www.w3.org/MarkUp/Guide/Style

Code Review on GitHub: https://help.github.com/articles/using-pull-
requests

Eclipse: http://www.eclipse.org/resources/?
category=Getting%20Started

Git: http://openhatch.org/missions/git

Groovy: http://groovy.codehaus.org/Getting+Started+Guide
Hibernate: http://www.hibernate.org/quick-start

HTML: http://www.w3.org/MarkUp/Guide

Intelli) IDEA: http://www.jetbrains.com/idea/webhelp/getting-started-
with-intelliji-idea.html

Implementing OpenMRS:_http://en.flossmanuals.net/openmrs-guide,
IRC: http://www.irchelp.org/
Java: http://docs.oracle.com/javase/tutorial/

JavaScript: http://www.ibm.com/developerworks/training/kp/wa-kp-
getstartedjs

Jetty: http://www.edlipse.org/jett

JIRA: https://confluence.atlassian.com/display/JIRA/Getting+Started
jQuery Ul: http://learn.jquery.com/jquery-ui/getting-started
JRebel: http://zeroturnaround.com/software/jrebel

JUnit: http://junit.org

Liquibase: http://www liquibase.org/quickstart.html

Maven: http://maven.apache.org/guides/getting-started

Mockito: http://code.google.com/p/mockito

MySQL: http://dev.mysql.com/usingmysgl/get_started.html

Smart Questions: http://www.catb.org/esr/fags/smart-questions.html

Spring: http://spring.io/guides

67

http://docs.angularjs.org/misc/started
http://bikeshed.com/
http://www.w3.org/MarkUp/Guide/Style
https://help.github.com/articles/using-pull-requests
http://www.eclipse.org/resources/?category=Getting Started
http://openhatch.org/missions/git
http://groovy.codehaus.org/Getting+Started+Guide
http://www.hibernate.org/quick-start
http://www.w3.org/MarkUp/Guide
http://www.jetbrains.com/idea/webhelp/getting-started-with-intellij-idea.html
http://en.flossmanuals.net/openmrs-guide/
http://www.irchelp.org/
http://docs.oracle.com/javase/tutorial/
http://www.irchelp.org/
http://www.ibm.com/developerworks/training/kp/wa-kp-getstartedjs
http://www.eclipse.org/jetty
https://confluence.atlassian.com/display/JIRA/Getting+Started
http://learn.jquery.com/jquery-ui/getting-started
http://zeroturnaround.com/software/jrebel
http://junit.org/
http://www.liquibase.org/quickstart.html
http://maven.apache.org/guides/getting-started/
http://code.google.com/p/mockito
http://dev.mysql.com/usingmysql/get_started.html
http://www.catb.org/esr/faqs/smart-questions.html
http://spring.io/guides

Subversion: http://openhatch.org/missions/svn

Tomcat: http://wikiapache.org/tomcat/GettingStarted

YourKit: http://www.yourkit.com/overview/index.jsp

68

http://openhatch.org/missions/svn
http://wiki.apache.org/tomcat/GettingStarted
http://www.yourkit.com/overview/index.jsp

16 APPENDIX B: OPENMRS
GLOSSARY

Allergy list: A series of allergies from which a patient suffers.

Apache Maven: A build management tool used for OpenMRS
development.

Bamboo: A continuous Integration (Cl) tool used by OpenMRS.

Bug: A repeatable error or flaw in a program that causes an
unexpected or incorrect result.

Bundled module: An OpenMRS module that is prepackaged with an
OpenMRS release.

Clinician: A doctor, nurse, or other clinical officer who provides health
care to patients.

Cohort: A group of patients that can be defined by one or more
common traits.

Contributor: Any community member who participates and
contributes towards the OpenMRS community.

Core: The source code for the OpenMRS APl and core modules. The
core does not include the source code for other, optional modules.

Concept: The fundamental unit of capturing clinical information within
OpenMRS. Concepts represent a single idea and include both questions
and answers. "cough", "address", "duration", and "yes" are a few
examples.

Concept dictionary: A list of all the medical and program-related
terms used in OpenMRS as questions and answers.

Eclipse: A multi-language, open source Integrated Development
Environment (IDE) recommended for OpenMRS development

Customization: The idea of adapting a system to suit one's specific,
particular needs.

Demo data: A sample anonymized data set, including 5,000 patients and
500,000 observations, is available for most releases of OpenMRS.

Electronic Medical Record: A digital version of a paper
chart/document used to record patient data.

Electronic Medical Record system : A computer system that allows
for recording, storage, and retrieval of Electronic Medical Records.

Encounter: A clinical transaction in which a group of data (eg.
observations, notes, and orders) are recorded. Encounters generally
involve one (or a few) providers. Examples include the paper
"encounter form" with which OpenMRS started, an order entry session,
a daily note & associated orders written for patient while they are in
the hospital, etc.

F/LOSS, FOSS, etc.: Free/libre and open source software. Software is
freely licensed to use, copy, change and distribute. OpenMRS is licensed
under the OpenMRS Public License based on the Mozilla Public License.

Form: An electronic form that may be used to enter or view data for
a patient.

Git: A distributed version control system (DVCS) that allows multiple
developers to works simultaneously on a project without the need for
a common network connection.

GitHub: A web based hosting service for software development
projects that use the Git revision control system. The OpenMRS source
code is hosted on GitHub at http://github.com/openmrs

Groovy: A computer scripting language that allows automation and
quick performance of tasks.

Hibernate: An object relational mapping (ORM) library for the
Java language used by OpenMRS.

HL7: An abbreviation of Health Level Seven, a standard for exchanging
information between medical applications.

Implementer: Someone who has or is in process of deploying
OpenMRS in a specific location or context of use.

Informatics: The application and study of information technology and
its use for society.

IRC: An abbreviation for Internet Relay Chat, an online tool to
communicate with others in "real time". OpenMRS uses IRC to allow
developers and implementers to collaborate and meet.
http://go.openmrs.org/irc

JIRA: An issue tracking /project management tool use by OpenMRS.
Accessible at: https://tickets.openmrs.org/

jRebel: A Java development-time tool that decreases turnaround by
instantly reloading changes to your code, without having to restart the
container or redeploy the application.

Mailing list: A collection a sub group of community members' e-mail
addresses.

Medical informatics: A discipline of studying the use of informatics in
field of medical science.

Module: A software package that extends or changes OpenMRS
functionality without interfering with core OpenMRS code and have full
access to OpenMRS.

Module repository: An online resource to find and maintain
community-developed OpenMRS add-on modules.
http://modules.openmrs.org/

MySQL: An open source relational database management system
(RDMS) popular with web application and used by OpenMRS.

Observation: An atomic unit of information that is recorded about a
patient at a moment in time.

Open source: A method of developing software where the source
code is freely available for others to examine, use, and build upon. Also
a type of software development community based around sharing of
work and collaboration.

Platform: A computer system that is simple by design, and is intended
to be customized and adapted for use in a wide variety of contexts.

70

Privilege: Defines what actions an authenticated user is allowed to
perform within OpenMRS.

Provider: A clinician who is responsible for providing care to a patient.

Spring Framework: An open source application framework and
inversion of control container used by OpenMRS.

Sprint: A semi-agile process adopted by OpenMRS for implementing
new features in a coordinated and speedy manner.

Super user: An OpenMRS user with permission to perform all
management tasks in the application.

System administrator: A person who is responsible for day-to-day
maintenance of a computer system or network.

User: A person who uses OpenMRS, or more specifically the data in the
system representing that person.

Visit: A visit encompasses one or more encounters to describe an
event where the patient has interacted with the healthcare system.
Visits may occur within minutes/hours or may extend over days,
weeks, or even months. Examples of visits include an outpatient (clinic)
visit, a hospitalization, or a visit to the lab.

Wiki: A web site containing documentation and other resources for a
project or organization.

Workflow: A series of tasks to accomplish a goal.

YourKit: A CPU and memory Java Profiler with J2EE/]2ME support and
IDE integration for various major Java IDEs.

For an up to date version of this glossary visit:
https://wiki.openmrs.org/display/docs/OpenMRS+Glossary

71

17 APPENDIX C:
TROUBLESHOOTING

72

"I1ea Ausianiun

guwuado Ayasm puaiy

+

DM 3Ly
ui sabed Aiopnponul
ayl 1o ¥oayo

‘[ENUBLW SJadojBrap

ayy yBnouyy peay

Lpasnuog A|elsusg 1snp

‘wruoy uflisep e

J0) o1do) e se ssodoug

151 Buijiew Jadojaasp
ay) |Bw3 juonsanb
Bunwweiboud
10 [BDjUYDE) B)l S|

51| Jajuawa|dw
ay} (lew3 suonsanb
pajejat-UlBLLOp
Jo ‘uoneinBlyuoo
‘BAIESSILILIPE
‘afiesn e) s|

A

8] Jo auo |[Bw3

‘uonsanb
UCISSNoSIp B Jo
asow sy § 15y Bupew
Jadojaaap ay) |lew3

‘uansanb
oioads B 531) Oyl

F 3

josloug Jnop,
BuBisaq Jo Buued
Jnoge uosany

(0w uo Budsy) y1 BBS
1o |[BlWS) SISYDIBM,
123011 8y JoEjUa)

+

4 sjoaloud
Jayjo 0} a|qeadde
uonsanb Jnod s|

2losloud
Jnok o} oyoads
uonsanb nok s|

151 Buirew

Jadojpasp ay |BWT

jol-ll

sabed ym
JUEAS|B) PESJ PUE PUI4

151 Buyrew

Jadojarap ay] |BWIT

jBuo a4
ol pal} usaq

apoa SHNL

Jnof yum waejgoad Uim W
B aq 0} 5Waag B aq o)

A

A

spasp Jasn Buidyusp)
diaH paaN noA

SyWuedQ Jo pUop,
ay} Buipueisiepun
djgH paaN noj

A

\|.—1J

SaNYIE
“WHIr ‘siamsue
INIM (UDIess WoSND
ajBoog) yueas 18N

8p0D BUl YN,
Buaupp, s1 Buyjewog

uonseny) Jo wajqolid jo adA] JnoA Ajusp]

73

LNHIr uo
18301} B SBH

Troubleshooting Flow Chart

74

	OPENMRS DEVELOPERS GUIDE
	1. WELCOME TO OPENMRS!
	Who should read this book
	WHAT YOU WILL GAIN

	2. THE NEED FOR HEALTH IT
	IMPROVING HEALTH CARE QUALITY
	CHALLENGES OF MAINTAINING EMR'S

	3. OUR RESPONSE
	SOLVING HEALTH IT CHALLENGES
	WHAT WE CREATED
	BUILDING A COMMUNITY
	LOOKING FORWARD

	4. OPENMRS TODAY
	A SNAPSHOT
	WHERE AND WHO WE ARE
	VARIETIES OF USAGE
	THE FUTURE OF OPENMRS
	WHERE YOU FIT IN

	5. WORKING COOPERATIVELY
	GETTING THINGS DONE
	PLAY NICELY
	WORKING ASYNCHRONOUSLY
	COLLABORATION VS. COOPERATION
	FIND MENTORS
	FORMING QUESTIONS
	COMMUNICATE PUBLICLY & PRODUCTIVELY
	AVOID BIKESHEDDING
	COMMIT EARLY AND OFTEN
	SHARE & LICENSE YOUR WORK
	SUMMARY

	6. COLLABORATION TOOLS
	TOOLS AND TIPS
	OPENMRS ID
	OPENMRS WIKI
	OPENMRS ANSWERS
	IRC
	MAILING LISTS
	MEETINGS
	COMMUNITY SWIM LANE
	JIRA ISSUE TRACKER
	GIT
	LET'S GET STARTED!

	7. ARCHITECTURE
	TECHNICAL OVERVIEW
	THE SOURCE CODE STRUCTURE
	THE MODULAR ARCHITECTURE
	ASSOCIATED FRAMEWORKS AND TECHNOLOGY STACKS
	AUTHENTICATION AND AUTHORIZATION
	SUMMARY

	8. DATA MODEL
	METADATA

	9. DEVELOPMENT PROCESS
	SELECTING DEVELOPMENT WORK
	BEGINNING WORK
	USING GIT TO MANAGE YOUR WORK
	CODING CONVENTIONS
	QUALITY ASSURANCE EFFORTS
	MAINTAINING YOUR CODE
	PUSHING YOUR CODE AND REQUESTING A REVIEW
	ABOUT ATTRIBUTION
	ABOUT SUBVERSION AND OPENMRS
	CODE REVIEW
	REOPENING ISSUES
	HOW TO GET HELP
	SUGGESTING PROCESS CHANGES
	PUBLICIZING YOUR WORK
	REQUESTING TOOL LICENSES FOR YOUR DEVELOPMENT WORK
	UNDERSTANDING OPENMRS RELEASES
	OPENMRS RELEASE TYPES
	CONTINUOUS INTEGRATION (CI) FOR OPENMRS
	SUMMARY

	10. GET SET UP
	JAVA VERSION CHECK
	CHOOSING AN APPROACH
	OPENMRS SDK INSTALLATION
	STANDALONE SETUP
	MANUAL INSTALLATION
	CONCLUSION

	11. CREATING YOUR FIRST MODULE
	AMANI CLINIC CASE STUDY
	OVERVIEW
	PRE-DEVELOPMENT ISSUES
	CREATING A BASIC MODULE
	BASIC MODULE STRUCTURE
	COMPILING YOUR MODULE
	TRY OUT YOUR MODULE
	CUSTOMIZE YOUR MODULE
	CODING CONVENTIONS AND STANDARDS
	SHARING YOUR MODULE

	12. GET INVOLVED
	FINDING JIRA ISSUES
	COMMUNITY DEVELOPMENT SWIM LANE
	MENTORING PROGRAMS
	COMMUNITY GATHERINGS ONLINE
	COMMUNITY GATHERINGS AROUND THE WORLD
	FEEDBACK

	13. GET SUPPORT
	ASKING QUESTIONS
	FINDING ANSWERS WITH REFERENCE MATERIAL

	14. DEVELOPER CHECKLIST
	15. APPENDIX A: LEARNING RESOURCES
	16. APPENDIX B: OPENMRS GLOSSARY
	17. APPENDIX C: TROUBLESHOOTING

