
SAHANA
EDEN

1

Published : 2014-06-08
License : None

2

INTRODUCTION
1. ABOUT THIS BOOK
2. WHY SHOULD YOU USE SAHANA EDEN?
3. WHAT DOES SAHANA EDEN DO?
4. WHO USES SAHANA EDEN?
5. TECHNICAL OVERVIEW
6. PLANNING A DEPLOYMENT

3

1. ABOUT THIS BOOK

Everyone can be affected by disasters whether personally or indirectly.
Disaster Management professionals are kept busy responding to
events of all scales, yet find time to explore the use of more
sophisticated toolsets. The Sahana Project was conceived by people
on the front lines of the 2004 Sri Lanka tsunami in order to coordinate
the rescue efforts. The word "sahana" means "relief" in Sinhala. This
has evolved to provide solutions to both prepare for and respond to
disasters no matter where they happen.

Sahana Eden is an open source software platform which provides a
range of solutions for Disaster Management practioners to help them
reduce the impact disasters have on our communities through tracking
the needs of the affected populations & coordinating the responding
agencies & their resources.

The latest version of this book is available to either read online or
order a printed copy from http://bit.ly/sahanaedenbook

WHO IS THIS BOOK FOR ?

This book has been imagined to meet the needs of three kinds of persons: 1)
Decision Makers looking for an appropriate solution for disaster management; 2)
Deployers who are ready to deploy Sahana Eden; and 3) Developers who are
extending Sahana Eden for more specialized solutions or want to contribute to
the project.

Decision Makers

Preparing and planning for crisis and disaster scenarios is an important
part of every community. Whether it is at a global, national, regional or
local level, leaders who understand the complexities of disaster
response make better decisions and can quickly respond to changing
situations. Decision Makers should read the "Introduction" section. This
content covers the Sahana Eden platform overview, capabilities and
selected case studies. This material will help decision makers in
strategic planning and give them important insight into the deployment
process.

Deployers

Those who are thinking about or who are ready to deploy Sahana
Eden should read the "Introduction", "Getting Started" and
"Administration" sections.

In order to deploy Sahana Eden, a deployer should be comfortable
with the following system administration processes:

Installation of an operating system (such as Debian Linux)
Command line usage (for package installation)
System configuration involving editing of text files

Developers

Developers should read the entire book as they should have an
overview of how the software can be used and will need to maintain
their local deployment.

Basic customization doesn't require any more skills than those required
for a Deployer, however, more advanced development will require
being familiar with or learning the following skills:

4

http://eden.sahanafoundation.org/wiki/Book

Python
JavaScript
Cascading Style Sheets (CSS)

5

2. WHY SHOULD YOU USE

SAHANA EDEN?
Sahana Eden is an open source software platform which has been built
specifically for Disaster Management. It is highly configurable so that it
can be used in a wide variety of different contexts and is easy to
modify to build custom solutions. Different levels of support are
available from both the voluntary Sahana Eden community and
professional companies.

Training of Teachers of Pune University on Disaster Management

BUILT FOR DISASTER MANAGEMENT

Sahana Software was initially developed by members of the
information technology (IT) community in Sri Lanka to provide
solutions for the relief effort following the 2004 Indian Ocean Tsunami.
Sahana Eden is the latest evolution of this software and provides a
solution to manage organizations, people, projects, inventory and
assets as well as collecting information through assessments and
providing situational awareness through maps.

Sahana Eden can be accessed from the web or locally from a flash
drive, allowing it to be used in environments with poor internet. Local &
Web versions can be configured to synchronize to allow data to be
shared between them.

These features are designed to help Disaster Management
practitioners to better mitigate, prepare for, respond to and recover
from disasters more effectively and efficiently. Sahana Eden can
provide valuable solutions for practitioners in Emergency Management,
Humanitarian Relief and Social Development domains.

COMMUNITY AND PROFESSIONAL
SUPPORT

6

Sahana Eden is a project of the Sahana Software Foundation, whose
mission is:

To help alleviate human suffering by giving emergency managers, disaster
response professionals and communities access to the information that
they need to better prepare for and respond to disasters through the
development and promotion of free and open source software and open
standards.

The project is supported by a voluntary community of Disaster
Management practitioners, students, academics and companies. This
community is able to provide a basic level of support to help you
deploy and configure Sahana Eden. There are also companies, such as
AidIQ, who provide professional services to customize and support
Sahana Eden.

HIGHLY CONFIGURABLE AND EASY TO
MODIFY

Sahana Eden is designed to be rapidly configured and customized to
support the diverse business processes used within Disaster
Management. Sahana Eden's modular design allows different pieces of
functionality to be enabled and disabled as required providing flexible
solutions for changing contexts.

The application can be configured to secure sensitive information,
while also making data which needs to be shared available in a variety
of different formats including Microsoft Excel and PDF. To ensure that
Sahana Eden is accessible to every country, it can be translated into
multiple languages.

Finally, Sahana Eden is licensed under the Open Source MIT License
(http://www.opensource.org/licenses/mit-
license.php), making it free to download, customize and modify
without any restriction or reliance on any single vendor. The MIT
License also places no restriction on the commercial or closed
deployments of the software, giving the greatest flexibility for the use
of Sahana Eden in sensitive environments.

7

http://www.opensource.org/licenses/mit-license.php

3. WHAT DOES SAHANA EDEN

DO?
Sahana Eden contains a number of different modules which can be
configured to provide a wide range of functionality. This chapter gives
a brief summary of the core modules and outlines how Sahana Eden
can meet some of your needs.

ORGANIZATION REGISTRY

Many diverse organizations are involved in Disaster Management, from
responding to disasters to strengthening communities to providing
support to people in need. Sahana Eden’s Organization Registry can
track what organizations are active in different contexts, providing
opportunities for collaboration and coordination. After the 2010
earthquake in Haiti, Sahana Eden managed a list of 696 organizations
who were all providing assistance to the affected population. This
included Government Departments, Non-Governmental Organizations
(NGOs), United Nations (UN) Agencies and Corporations.

The Organization Registry also allows organizations to record their
Offices, Warehouse and Field Sites including their locations so they can
be mapped as well as links to other modules such as Human
Resources, Assets and Inventory.

PROJECT TRACKING

By telling you Who’s Doing What, Where, and When, Sahana Eden
provides a valuable tool to help organizations responding to disasters
know where the greatest needs are and coordinate with others who
are engaged in similar work.

The Disaster Risk Reduction (DRR) DRR Project Portal
(www.drrprojects.net) uses Sahana Eden to provide a coalition of
organizations a platform to share information on what projects they
are engaged in within the Asia Pacific region. There is information on at
least 1250 projects which is publicly available to communities,
stakeholders and decision makers to facilitate cooperation and
planning and to identify gaps and overlaps.

8

http://www.drrprojects.net

HUMAN RESOURCES

The most important part of Disaster Management is the people.
Whether they are community volunteers or staff working for different
organizations, the Human Resources module can help manage the
people involved. It will track where they are, what skills they have and
help ensure that everyone is effectively engaged with the work that
needs to be done.

Sahana Eden can also be used to provide a contact list to ensure that
the right people can be contacted at the right time.

The Associação Portuguesa dos Bombeiros Voluntários (APBV) - the
Portuguese National Volunteer Fighting Association - use Sahana Eden
to help manage their various teams including tracking their experience,
training and evaluations as a solution for managing credentialing of
their volunteers.

INVENTORY

Whether organizations are supplying basic essentials of life to people
affected by natural disasters or giving communities the tools they
need to restore their livelihoods, Sahana Eden can be used to manage
inventories of items and match requests for items with warehouses
and other facilities which have them available. Operationally, Sahana
Eden can be used to record and automate transactions for sending
and receiving shipments. Sahana Eden can support multiple Catalogs of
Items as well as providing alternative items to ensure more effective
use of supplies. Sahana Eden can be configured to load multiple
catalogs including a generic list of items and/or the IFRC Emergency
Item Catalog.

9

The HELIOS Foundation is utilizing Sahana Eden to allow different
Humanitarian NGOs to share inventory information to improve
operational efficiency by facilitating the utilization of surplus items and
coordinating procurement of new items.

ASSETS

A wide range of assets are needed to respond to disasters, including
vehicles to transport people and relief items, radio equipment to
provide communication where telecommunication infrastructure has
been destroyed, and generators to provide backup power. Sahana
Eden is able to manage assets, track where they are, who they have
been assigned to, and what condition they are in. This ensures that
assets are used effectively and efficiently.

The Resource Management System is a Sahana Eden instance deployed
by the International Federation of Red Cross and Red Crescent
Societies (IFRC) to provide visibility on the assets of national Red Cross
and Red Crescent Societies. This prepares the Red Cross movement to
respond more effectively to disasters with the assets they need.

ASSESSMENTS

10

Sahana Eden can be used to collect and analyze information from
assessments to help organizations more effectively plan their disaster
management activities. Different assessment templates can easily be
designed and imported into Sahana Eden to support assessments for
different organizations in different contexts. Data can either be
entered into an interactive web form or imported via an Excel
template.

In order to help decision makers effectively use the information
collected in assessments, Sahana Eden provides a range of analysis
including custom reports, graphs and maps.

SCENARIOS & EVENTS

To help organizations better plan for disasters, Sahana Eden can be
used to plan for different scenarios, including recording what human
resources, assets, facilities and tasks will be needed to effectively
respond.

When an incident occurs events can be created from a scenario
template to allocate the resources and alert people of the need to
respond.

MAP

“Some people need to see a map before they can even start having a
conversation about the data.”- Sahana Eden User

Sahana Eden has fully integrated mapping functionality which allows
any location-based data to be visualized on a map. This information
can also be searched using a map-based boundary selection. Maps
provide situational awareness which is essential when either planning to
prepare for or respond to a disaster. Sahana Eden supports many
standard formats for overlaying data on maps from other sources
and Geographical Information Systems (GIS), for example natural
hazard risks, population or weather.

11

SHELTER MANAGEMENT

When disasters are widespread and result in population displacement,
understanding and tracking the landscape of shelters - and the people
in them - is a critical activity. The Shelter Registry provides
functionality to list and track information on shelters and on the
people arriving and departing. Shelter details include location, services
provided, responsible organization and contacts, demographics, and
needs. In addition, individual person data includes name, age, relatives,
status, health, and many other details to provide a clear understanding
of population demographics within the site.

MESSAGING

In the complex domain of Disaster Management, communication is
critical. Sahana Eden provides support for messages to be sent
by Email, SMS, Twitter and Google Talk. Distribution Groups can be set
up to allow messages to be easily sent to many people at once. Users
are able to search for specific information and subscribe to receive
update messages when new information is added.

Interactive messages can also be set up to allow people to send short
message queries to Sahana Eden and receive automatic responses.

12

4. WHO USES SAHANA EDEN?

Sahana Eden is used by many diverse organizations throughout the
world to assist the response to traumatic events such as natural
disasters. From hosted deployments by Foundation Team members to
on-site deployments within organizations, Sahana Eden's versatility is
demonstrated in some of the following case studies and use cases for
the software. While some first responders are coming to assist after
an earthquake, others are attempting to reduce risk by gathering
information and helping to network and raise awareness prior to a
disaster. Coordination of resources, understanding the inventory of
available resources, raising awareness, and providing early warning all
reduce risk and empower responses that can literally save lives. Here
are some stories about deployers and responders using Sahana Eden.

APBV - PORTUGUESE VOLUNTEER
FIREFIGHTERS

With little to no budget, the president of the Associação Portuguesa
dos Bombeiros Voluntários (APBV), was seeking better solutions to
manage their limited resources. In the past they had tried proprietary
software based solutions which were not maintainable and did not
address their needs. These solutions were costly and did not offer a
sustainable method for data management or migration.

After seeing a demonstration of Sahana Eden at the Information
Systems for Crisis Response and Management (ISCRAM) conference in
Lisbon, APBV deployed the Human Resources module to help manage
personnel and are planning to deploy the vehicle management system
and connecting their GPS-enabled Tetra radios to Sahana Eden's
mapping capabilities. They hope that this will become the national
standard for disaster planning and crisis management for all of
Portugal.

DISASTER RISK REDUCTION PROJECT
PORTAL

www.drrprojects.net

The Disaster Risk Reduction (DRR) Project Portal collects information on
all multi-country and national level DRR projects and initiatives in the
Asia Pacific region implemented since 2005. By facilitating information
sharing across the region, the Portal aims to advance the Hyogo
Framework for Action (HFA) goals in building the resilience of nations
and communities to disasters. This includes making disaster risk
reduction a high priority on local and national levels. There are many
priorities for action, such as knowing the risks, enhancing early warning
systems to reduce vulnerabilities, and building a culture of safety and
resilience for all people by strengthening networks and working with
the media.

This Sahana Eden-powered portal was deployed at the Asian Disaster
Preparedness Center.

The Project Portal:

13

http://www.drrprojects.net
http://www.preventionweb.net/files/1217_HFAbrochureEnglish.pdf

Helps effective planning, programming, cooperation, and
collaboration of DRR projects and programs in the region by
facilitating project analysis to identify gaps and overlaps.
Is essential for governments, organizations and donors involved
in implementing and supporting DRR projects and program in the
region.
Is a useful resource for academics, students and the media for
obtaining an overview of DRR projects being implemented in the
region.

HAITI 2010 EARTHQUAKE RESPONSE

We all recall the awful event in early 2010 when an earthquake hit the
town of Léogâne, near Port of Prince, Haiti. The loss of life, building,
and damage estimates were shocking but trained response
organizations went into action immediately.

Anticipating the need for overall organization coordination, the Sahana
Software Foundation deployed a public emergency response portal
site using the Sahana Eden software. The site was hosted at
http://haiti.sahanafoundation.org and the community managed access
for registered users - those from charitable organizations, government
agencies and educational institutions were given create/edit
permissions to the site; while most of the data remained publicly
available (read access) excluding sensitive information (such as personal
contact information for agency staff). The site went live the day of the
disaster.

In the first 48 hours after the earthquake, responders wanted to know
was who else was responding, what organizations already had staff in
Haiti that could assist, where were they located, and what assets and
resources they had available to them. To meet this need, Sahana's
Organization Registry (OR) tracked organizations and offices working
on the ground in Haiti. The Organization Registry provided a
searchable database of organizations responding to the disaster, the
sector where they are providing services, their office locations,
activities and their contact details. The Sahana database became one
of the primary repositories of organization, office and contact
information for the relief operation during the first couple of weeks of
the response. Organizations were encouraged to self-register and
report their office locations or to simply send the Sahana team an e-
mail indicating their office locations. Volunteers entered data from pre-
disaster lists of organizations working in Haiti available from United
Nations Office for the Coordination of Humanitarian Affairs (UN
OCHA), as well as active contact lists used by United Nations Disaster
Assessment Coordination (UNDAC), InterAction and other sources with
official and accurate points of contact.

14

http://haiti.sahanafoundation.org/

During the second week of the relief operation, requests came from all
directions seeking to identify the location and operating status of
hospitals and medical facilities within Haiti. Sahana Eden's Hospital
Registry organized a volunteer effort to geo-locate approximately 100
hospitals with names and known coordinates over a 24-hour period.
The results of this effort added over 160 hospitals to the Sahana
Hospital Registry that had been set up to manage medical and health
facility capacity and needs assessment. Because avoiding overcrowding
and ensuring medical personnel and equipment availability is crucial to
its success, this registry was designed to be compliant with the OASIS
EDXL-HAVE interoperability standard that provides a schema for
tracking hospital capacity and bed availability data during emergencies.
A KML feed built from Sahana’s hospital location data provided a visual
customizable display of geographic data in Google Earth. This feed
remained the most accurate and complete source of operating
hospital facilities throughout the first two months of the relief
operation and was accessed by thousands of users world-wide.

The technology community's response to the Haitian earthquake was
an unprecedented collaborative and cooperative effort on the part of
different organizations to come together and to help each other and
to not replicate efforts. The Sahana Software Foundation team
worked from outside Haiti to deploy and manage the infrastructure
being used by local and international responders and contributors.

INTERNATIONAL FEDERATION OF RED
CROSS AND RED CRESCENT SOCIETIES

The International Federation of Red Cross and Red Crescent Societies
(IFRC) developed a Resource Management System using Sahana Eden.
This allows their National Societies to share information on their
Inventory, Assets, Staff and Volunteers. Neighboring National Societies
and the IFRC can quickly see what is available in the event of a major
disaster. This information is blended with data from other Geographic
Information Systems (GIS), such as Population Density, Rainfall and
Topography to allow for a more informed planning of the response.

The solution allowed agencies to share a common server, yet retain
full control over their data and who can have access to it (i.e. a multi-
tenancy system). The open source nature of the software was
important because it meant there was no vendor lock-in and the
software was easy to maintain. For this deployment the Sahana team
deployed using Amazon Web Services in the regional data center to
guarantee low latency.

HELIOS SUPPLY CHAIN AND INVENTORY
SHARING

The HELIOS foundation (helios-foundation.org) in the United Kingdom
wanted to create a portal to allow Humanitarian Non-Governmental
Organizations (NGOs) working in the field to be able to track and share
information on their inventory of relief items. The system is planned
to allow them to use up surplus items, avoid items expiring and avoid
duplicate procurement. Data can be automatically uploaded from
HELIOS instances or via manual data entry or uploading of
spreadsheets.

Sahana Eden was chosen to allow various methods of data entry as
well as to scale for use by other NGOs. Future iterations will include
sharing of information on planned procurements to allow bulk
discounts shared freight movement and import costs.

15

This work was done for the Consortium of British Humanitarian
Agencies and funded by the Department for International Development
(DfID), part of the UK government.

16

5. TECHNICAL OVERVIEW

Because Sahana Eden needs to be accessible to users at remote
locations, including the public, a browser-based solution was essential.
The system also needs to be able to be used on offline laptops, so it
needs to run on a lightweight stack.

Python was selected as a suitable high level language allowing the rapid
customization of code required for each individual circumstance yet
has a large number of powerful libraries available including for
Geospatial Information Systems (GIS).

Sahana Eden includes tools for synchronization between multiple
instances, allowing for responders or district offices to capture data
on victims in the field and exchange the data with other offices,
headquarters or responders in the field.

SAHANA EDEN FRAMEWORK

The Sahana Eden Software Platform has been built around a Rapid
Application Development (RAD) Framework. This provides a high level
of automation to ensure that new solutions can be quickly and
effectively developed. Once a database table is defined, the Sahana
Eden Framework automatically generates HTML pages to handle CRUD
(Create, Read, Update, Delete) as well as Search, Map and Pivot
Reports. Web Services are available to import and export in XML, CSV,
JSON and EXtensible Stylesheet Language (XSL) transforms are
supported to produce other data standards.

The Sahana Eden Framework has flexible authorization policies which
can be configured to grant permissions for different modules, tables
as well as the ability to have multiple Organizations control their own
data on a single Sahana Eden installation.

Sahana Eden can be downloaded and run locally from a flash drive.
Synchronization functionality allows data to be entered then keep up
to date between different installations, including online servers and
local flash drive installations. The Sahana Eden Framework also includes
a scheduler for running tasks at a specific time, in regular intervals or
as asynchronous tasks which are triggered by users.

SAHANA EDEN ARCHITECTURE

The basic Sahana Eden architecture is as follows:

Web Server Apache
Other web servers can also be used,
such as Cherokee.

Application Sahana Eden

Web
Application
Framework

Web2Py

Programming
Language

Python & Java
Script

Database
MySQL,
PostgreSQL, or
SQLite

MySQL, PostgreSQL, and SQLite are
supported.

Other databases should be usable
without major additional work since
Web2Py supplies many connectors.

17

Web2Py supplies many connectors.

Operating
System

Linux (Debian
recommended)

Windows and Mac OS X are possible,
but only recommended for single-
user environments.

18

6. PLANNING A DEPLOYMENT

A successful deployment of Sahana Eden must consider the people
and business processes involved as well as the technology. This
chapter will provide guidance on how to engage with the necessary
people and analyze the business processes to ensure that you deploy
a successful solution. This planning will help to guide you through the
Configuration and Customization that your deployment will require and
may also help you to develop the requirements for new modules you
may need to develop.

WHO ARE YOUR USERS?

Your deployment of Sahana Eden should be beneficial to its users. To
ensure that you achieve this you may need to spend some time
consulting your users to find out what their needs are and how Sahana
Eden can help them. Identifying key stakeholders and "champions" who
will promote the use of Sahana Eden to others can greatly support
your deployment.

To effectively deploy Sahana Eden you need to know who the users
will be. Some important questions to ask about your deployment are:

Is it going to be accessible to the public? Is ALL of the data
accessible?
How many users will be accessing the system at once?
Will it be used only internally within a single organization or
across multiple organisations?
Will there be different types of users? What different data
will they be able to access and modify?
Will new users need to be approved? By who?
What languages will your users need to access Sahana Eden in?
Will users need training to effectively use Sahana Eden?
What support will your users need? How will this support be
provided?

Sahana Eden can be easily configured to support a wide range of
different answers to these questions.

WHAT SOLUTION IS APPROPRIATE?

It is important to consider how Sahana Eden aligns with
existing business processes and what new workflows will need to be
performed by your users. If you are introducing
new business processes in Sahana Eden, this may require
more explanation and training for your users. Sahana Eden can be
configured to provide a wide range of solutions from simple tools to
complex systems. It is important to ensure that the solution that you
deploy is appropriate for your context.

As outlined in the chapter 'What is Sahana Eden', there are a number
of different modules available which can be enabled and disabled to
provide different types of solutions. The business processes that
Sahana Eden is used for will determine which modules are needed.
Enabling more modules will increase the complexity and workload of
the deployment. Therefore for a successful deployment, it may
be recommended to start by supporting a limited number
of business processes and ensure they are being used effectively
before enabling additional modules.

19

WHAT'S IN A NAME?

Although you are deploying a solution using Sahana Eden, you are free
to give it a name that is appropriate for your context. We do like it if
you can leave the "Powered By Sahana Eden" badge within your
solution's pages!

CONFIGURATION VS. CUSTOMIZATION

Sahana Eden offers a great deal of flexibility through configuration,
however, if you require specific functionality or features which are not
already supported you will need to customize the Python code which
Sahana Eden is written in. Fortunately Sahana Eden's Framework has
been designed to make it easy for you to relabel fields, add new fields,
hide existing fields and make fields required. More
advanced customization may also be required to add new database
tables or even build new Sahana Eden modules.

When Customizing the code, it is recommended to set up a testing and
release process to manage this development, especially if you have
already deployed a live instance.

WHERE WILL IT BE INSTALLED?

Sahana Eden can be installed on a variety of different infrastructures
depending on the needs and resources you have for your deployment.

Local Box/Server

To support multi-user access, it is usual to install Sahana Eden on a
server accessible through a Network. This could be using physical
hardware in your office, either a server or a computer that can be set
up as one. Although specialized server hardware is more expensive it
will provide better and more reliable performance.

Hosted Server

One of the more cost effective solutions for installing Sahana Eden is
to use a Hosted Service. This allows you to make monthly payments
for the use of of a Server without having to provide the infrastructure
to support a server (location, power back up, air conditioning) and
without having to worry about redundancy and maintenance.

Sahana Eden has been effectively installed on Amazon's Cloud service,
EC2 (http://aws.amazon.com/ec2/).

Flash Drive

Sahana Eden can easily be downloaded and run locally from a flash
drive on a Windows computer. it can be configured to be accessed on
a local network but for more than 4 users the performance will not be
optimal. For instruction on installing a Flash Drive instance, please
see http://eden.sahanafoundation.org/wiki/InstallationGuidelines/FlashDrive

GOING LIVE!

Once you have installed Sahana Eden there are a number of steps that
may be required to make the deployment successful. You may need to
train users or, if the deployment is public, promote it to encourage
new users. You should also consider operational requirements like user
support and backups.

20

http://eden.sahanafoundation.org/wiki/InstallationGuidelines/FlashDrive

GETTING STARTED
7. INSTALLATION
8. CONFIGURATION
9. IMPORTING DATA
10. LOCALIZATION

21

7. INSTALLATION

Sahana Eden can be installed on any environment which can run
Python, including Linux, Windows and OSX. The system supports a
number of different databases and has been widely tested on MySQL,
PostgreSQL and SQLite. A webserver is optional, but for production
installations we have experience of both Apache/mod_wsgi and
Cherokee/uwsgi.

For production installations, we would recommend Debian Linux v7
"Wheezy" as this is the environment for which the most support is
available. If you don't have a ready server for this, then we'd
recommend installing on Amazon's EC2 cloud as this can provide
scalable performance with a low setup cost.

Installation scripts and detailed instructions are available on the Wiki:

http://eden.sahanafoundation.org/wiki/InstallationGuidelines

Note that the first user to register gets administrator privileges for
the system.

If you need to customize the code, it is recommended to set up a
release process. Ideally, this would include a separate development
instance and a User Acceptance Testing (UAT) instance, which can be
run on the same server.

DIRECTORY STRUCTURE

After the installation, the typical directory structure of the instance
looks like:

22

http://eden.sahanafoundation.org/wiki/InstallationGuidelines

Troubleshooting Installation

Initial installation issues are generally due to missed installation steps
or a non-standard site configuration. Typical issues are:

Obsolete release packages:

The latest functionality will not be available in packaged releases which
are available for download. Currently we advise users to install the
latest development version from source instead.

Folder names:

Web2Py does not support hyphens in the application folder name. If
you specify a target folder name when cloning, be sure to specify a
target folder name without a hyphen in.

Linux permissions:

Web2py needs to be able to write in several Sahana Eden directories:
cache, databases, errors, sessions, and uploads. The installation
instructions and scripts should set the correct permissions. If you
encounter permission errors, refer to the installation instructions and
run the commands that set permissions and ownership of the Eden
directories.

Apache configuration:

23

Apache with mod_wsgi does not support underscores in hostnames.
(Underscores are not a legal hostname character according to the
formal W3 URI specification.)

If there are multiple mod_wsgi sites enabled, each must have its own
WSGIDaemonProcess name.

It is possible to run multiple Web2py applications under the same
hostname and the same mod_wsgi site. However, be careful when
setting up routes.py or Apache rewrite rules, as these will be
shared by the applications.

24

8. CONFIGURATION

Sahana Eden is a highly configurable system that can be adapted to
many different needs and situations. If you've taken the time planning
your project and have answered the questions posed in the "Planning a
Deployment" section, you are now simply looking for where to enter
the answers.

CONFIGURATION THROUGH THE WEB
INTERFACE

At the moment only some settings, like SMS, email inbox and Twitter,
are editable through the Web UI. Future plans are to add more
configuration settings through the Web UI but for now most
configuration options require editing text files.

CONFIGURATION THROUGH TEXT FILES

Many configuration options can be changed by editing
models/000_config.py. This consists of sections of Python code
where settings for a particular component of the system can be
changed. Most of the changes take effect immediately after saving the
file. For a production environment then the system would need to be
recompiled.

models/000_config.py has to be edited before using Sahana
Eden. Once you have edited models/000_config.py, change the
FINISHED_EDITING_CONFIG_FILE variable to True.

There are comments placed next to the options which are generally
self-explanatory in nature. Users must not change the variables (or
their names), they just need to change their values to configure the
instance.

The following sections of models/000_config.py are explained
in more detail:

Database Settings

It is recommend that production systems use PostgreSQL or MySQL
rather than the default SQLite. For these databases it is more secure
to provide the application with a database account with minimal
privileges.

This section of the models/000_config.py file can be used to
configure settings like:

Database Host: The server where your database is hosted
Database Name: The name of the database being used
Username: The username that has been assigned to the user for
use with Eden
Password: Password assigned to the user
Port: Port at which the database service is available. Set to None
to use the default setting

Authentication Settings

25

Administrators can use these settings to implement security policies
and to make sure that there is no unauthorized access or data
manipulation in the system. These settings are related to creating the
first user account of the system and determining how users register
and access the system.

Base Settings

Users can configure the system name, the public URL of the system
and data pre-population in this section of
models/000_config.py.

One of the most important system settings would be the selection of
the template as this can completely alter how Sahana operates as well
as it's look & feel. A list of available templates is in the folder
private/templates. Any template setting can be over-ridden
within 000_config.py for further fine-tuning as-required.

One of these settings is database pre-population. Users can determine
if the database will be pre-populated with sample data or not.

Changing the database migration setting to False in production will lead
to a performance gain. Migration tries to alter the SQL database
schema to match that expected in the code. This works very well for
simple cases, but may result in loss of existing data for complex cases,
so should be applied with care to Production servers.

Web2Py supports automatic migration, but having this enabled all the
time does lead to reduced performance, so enable migration only
when necessary.

Mail Settings

Sahana Eden can be configured to use a email service for messaging.
This section can help you to set up things like the outbound email
server and sender address. Note: Until the Sender address is specified,
the system will be unable to send emails!

Front Page Settings

Sahana Eden has a dynamic front page with a capability to display RSS
or Twitter feeds. You can change certain aspects of the landing page
of the application in the frontpage settings section of the code.

Settings in this section can be used to change which RSS and Twitter
feeds are subscribed to and displayed on the front page of the
application.

Module-specific Settings

Some settings for the Request Management, Inventory Management
and Human Resource Management modules can be accessed here.
These settings would generally be very specific to the needs of a
certain deployment.

Enabling/Disabling Modules

Sahana Eden supports a range of modules that can be enabled or
disabled to support different deployments. The default template
(private/templates/default/) has all the main modules
enabled as standard (you may notice that some other modules are
disabled as standard; these tend to be under development or
experimental).

26

Disabling a module has the effect of removing it from the main menu
of the application. All modules can be disabled except core modules:
Home (default), Administration (admin), Map (gis), Person Registry (pr)
and Organization Registry (org).

There are three ways to disable modules. The most direct way to do
this is to comment out the revelevant lines of code in the configuration
file of the default template:
private/templates/default/config.py. To turn a line into
a comment, simply make sure it begins with a # symbol.

For instance, consider the Shelter Registry (named "cr"). The following
code section in private/templates/default/config.py
applies to the Shelter Registry:

("cr",
Storage(
 name_nice = T("Shelters"),
 #description = "Tracks the location, capacity and breakdown of
victims in Shelters",
 restricted = False,
 module_type = 10,
)),

To disable this module, just make sure that each line in this section
starts with a hash (#) symbol:

#("cr",
#Storage(
name_nice = T("Shelters"),
#description = "Tracks the location, capacity and breakdown of
victims in Shelters",
restricted = False,
module_type = 10,
)),

The module is now disabled and will no longer show up in the
application menu.

The drawback of this approach, however, is that the default template
will be updated whenever you update your code, and any changes you
have made risk being lost. For a long-term solution, it is recommended
that you create a new template for your implementation.

Most implementations of Sahana Eden involve the creation of a
template folder specific for that project. This will be placed within
private/templates, as an alternative to the default. The
settings.base.template = “default” line within
models/000_config.py will then be changed to reflect the name
of the new template folder. Eden will initially look within this folder for
a config.py file, and if one is present, it will use the module list
defined there rather than the one within the default template. To
disable unwanted functionality, create a custom version of
config.py within your template folder, with unwanted modules
commented out as described above.

There is a third option for disabling modules that can be useful in
some cases. When testing, for example, or when demonstrating a sub-
set of functionality, for example, it may be useful to disable modules
without altering the templates. For this, models/000_config.py
can be used, and a section of that file is provided for adding in
overrides to the template. Add to this section a new line of code for
each unwanted module:

settings.modules.pop("unwanted-module-name", None)

This will remove the module from the list that was created by the
template. For example:

settings.modules.pop("cr", None)

27

While the above line is present, the Shelter Registry will be disabled,
just like in the previous example. Because updates to the code do not
touch models/000_config.py, this change will also be safe from
unwanted modification.

For more information on templates, see the Customisation section of
this book.

Updates to 000_config.py

So that your configuration settings are not changed when you update
the code for your implementation, your local copy of
models/000_config.py is not updated with the rest of the code.
Very occasionally, however, updates to 000_config.py are
necessary. If you do experience problems following an update, it is
worth checking your copy of 000_config.py in the models folder
with the current version. The current version can be found on your
system in private/templates/000_config.py.

Further information on configuring Sahana Eden can also be found at
http://eden.sahanafoundation.org/wiki/ConfigurationGuidelines

28

http://en.flossmanuals.net/sahana-eden/customisation/
http://eden.sahanafoundation.org/wiki/ConfigurationGuidelines

9. IMPORTING DATA

Adding data is a common activity and Sahana Eden offers a variety of
ways to do both batch imports and manual data entry. This section
covers importing data from CSV files and some basic troubleshooting.

IMPORT FROM SPREADSHEETS

If you have existing data available in a spreadsheet format it can be
imported into Sahana Eden to populate the database.

Resources which support spreadsheet import, have an "Import" menu
item in the module menu:

Step-by-step

1. Download a CSV Template

Go to the module (e.g. Inventory management), and find the Import
menu item for the resource you want to import data to (e.g.
Warehouses):

By clicking Import you get to the upload page which contains a form to
upload a new CSV file, and a list of prior imports (this list may be
empty):

If you click on the Download Template link in the upload form, you can
download an empty CSV file for this data resource in the required
format (this CSV file will just have column headers):

29

2. Fill in the CSV template

Fill in the CSV template with your data or re-format your existing
spreadsheet data to match this template:

Note that you may change the order of the columns, but do not
rename or change the column headers!

3. Upload the CSV file

After you filled in the CSV file with your data, go back to the upload
page in Sahana Eden,
choose your CSV file and click
Upload Data File.

4. Review the records and confirm the Import

After uploading the CSV file, Sahana Eden will show a list of records to
import ("Import Items") from your CSV file, along with any validation
errors:

Review the records displayed on the list. You can expand the record
details by clicking on Display Details.

Records can be selected for import or de-selected by clicking into the
Element column of the respective row. Selected rows turn green and
de-selected rows turn gray, while rows with errors are shown in red
(those cannot be selected for import).

Once you have selected which rows shall be imported, then click Submit
to import the selected rows into the database

Troubleshooting

 Sahana Eden reporting validation errors:

Correct any red colored rows (invalid data) according to the
error message displayed in the error column by making the
corrections in the CSV file.
From the review page choose the Import menu item and re-
upload the CSV file with the corrected data.

Data not being imported as expected:

30

Note: This refers to data which passed Sahana Eden's validation but
does not correspond to the user's expectation of correctness (e.g.
latitude ending up in a name column). Here are some common things to
check or try to address the errors:

You may change the order of the columns, but not rename the
column headers
Data must use UTF-8 character encoding
Export/Save as CSV file (.xls and .xlsx are also supported
although require an up to date version of the python xlwt library.
Using CSV is the safest method)
CSV must use comma as value separator and double quotes (i.e.
") as quoting character.
A common problem is that cells containing whitespace or
commas aren't enclosed in quotes
All data must be in a single worksheet
Duplicates will be resolved automatically. Where this fails you
might need to check spelling, remove any leading or trailing
whitespace in your cells, and make sure the CSV is using UTF-8
character encoding

31

10. LOCALIZATION

By default Sahana Eden displays all information in US English. However,
the system is fully internationalized, which means that all text elements
of the user interface can be displayed in any language, including right-
to-left languages.

The process of "localizing" Sahana Eden (adapting it to specific
language and locale) involves translating the text elements of the user
interface into whatever language is needed.

Many translations are already available for Sahana Eden, although they
may not be complete or not up-to-date. These include:

Arabic
Bosnian
Chinese (Simplified)
Chinese (T raditional)
Dari
English (UK)
French
German
Italian
Japanese
Khmer
Korean
Nepali
Pashto
Portuguese (Brazil)
Portuguese (Portugal)
Spanish
Russian
Tagalog
Tetum
Vietnamese

UPDATING AN EXISTING TRANSLATION

If you need to update an existing translation, either because it is
incomplete or to add customized strings specific to your installation,
then you need to update a text file in the languages folder (e.g.
languages/de.py for the German translation). This file contains a Python
dictionary to map the original US English strings to their translated
counterparts.

There are 2 approaches that you can take to generate an empty
language file for translation:

1. If you have just a small number of modules that you wish to
translate quickly then you can remove all untranslated strings
from an existing language file. Then navigate through these
modules - this will add any untranslated strings that the system
encounters to the language file (assuming the relevant file
permissions allow this).

2. If you wish to translate the entire application as part of a
Preparedness project then you can update all the language files
in languages by doing the following:

cd web2py
python web2py.py -S eden -R
applications/eden/static/scripts/tools/languages.py

32

There are 3 approaches you can take to do the translations:

Note: Inform all translators to not translate the variables within strings
(e.g. %(name)s), but just move around the surrounding text to ensure
that the word order makes sense.

1. If you have a small number of strings to translate then it is
possible to do this using the Web2Py Admin Interface (this
assumes that you have a local branch on your machine to work
on):

http://127 .0.0.1:8000/admin/default/design/eden# languages

2. If you want to send these strings to be translated by a
professional translation company, then they will typically expect
the strings in spreadsheet format. You can create a CSV of
strings using the T ranslate Toolkit:

web2py2po -i language.py -o language.po
po2csv -i language.po -o language.csv

T ip: Excel has a nasty habit of corrupting strings with quotation
marks or other special characters, so avoid this if possible & be
prepared to clean-up if not.

3. If you want to use a community of translators then you can use
Pootle (see below).

ADDING A NEW TRANSLATION

This can be done via the Web2Py admin interface:

http://127 .0.0.1:8000/admin/default/design/eden# languages

Create a new file using the ISO 639-1 Code of the Language plus ".py"
as the filename. If it is a national variation of a language, eg. New
Zealand English, add a suffix to the language code: "en_nz.py".

The same process then applies as for updating an existing language.

USING POOTLE TO MANAGE
TRANSLATIONS

Pootle is a web-based tool to manage translations by a group of
translators which includes the ability to have alternate suggestions
reviewed before being selected.

There is a Sahana instance at http://pootle.sahanafoundation.org
which is available for you to manage the translation for your language.

To use Pootle you need to convert the .py version of your translation
to/from the PO format, which can be done using web2py2po from the
T ranslate Toolkit.

33

http://127.0.0.1:8000/admin/default/design/eden#languages
http://127.0.0.1:8000/admin/default/design/eden#languages
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/Pootle
http://pootle.sahanafoundation.org
http://translate.sourceforge.net/wiki/toolkit/py2web2po

ADMINISTRATION
11. MAINTENANCE
12. DATA EXPORT

34

11. MAINTENANCE

When Sahana Eden has been deployed, then you need to ensure that
the system Availability is maintained through any upgrades and that
the Data Integrity isn't compromised by ensuring regular Backups are
taken.

BACKUPS

Backups are generally done by dumping the SQL to the filesystem &
then copying to tape from there. Also remember to backup the
contents of the uploads/ folder

Schedule backups for 02:01 daily
echo "1 2 * * * * root /usr/local/bin/backup" >> "/etc/crontab"

SCRIPTS

There are a number of useful maintenance scripts which are added to
/usr/local/bin by the installation scripts.

(Examples shown are for Apache/MySQL, variants are available for
Cherokee and/or PostgreSQL. Check the Installation Guidelines section
of the Wiki for the latest versions of these scripts.)

clean

This script is used to reset an instance to default values, which may
include 'prepopulated' data specific to this deployment.

#!/bin/sh
/usr/local/bin/maintenance
cd ~web2py/applications/eden
rm -f databases/*
rm -f errors/*
rm -f sessions/*
rm -f uploads/*
sed -i 's/deployment_settings.base.migrate =
False/deployment_settings.base.migrate = True/g' models/000_config.py
sed -i 's/deployment_settings.base.prepopulate =
0/deployment_settings.base.prepopulate = 1/g' models/000_config.py
rm -rf compiled
mysqladmin -f drop sahana
mysqladmin create sahana
cd ~web2py
sudo -H -u web2py python web2py.py -S eden -M -R
applications/eden/static/scripts/tools/noop.py
cd ~web2py/applications/eden
sed -i 's/deployment_settings.base.migrate =
True/deployment_settings.base.migrate = False/g' models/000_config.py
sed -i 's/deployment_settings.base.prepopulate =
1/deployment_settings.base.prepopulate = 0/g' models/000_config.py
/usr/local/bin/maintenance off
/usr/local/bin/compile

w2p

This script is used to open a Python shell in the web2py environment.
This allows database migration scripts to be developed interactively.

#!/bin/sh
cd ~web2py
python web2py.py -S eden -M

compile

This script is used to compile the Python code so that changes are
visible to users (until this time, chages to .py files aren't seen by users).

35

It is called automatically from the '
pull' and 'clean' scripts.

#!/bin/sh
cd ~web2py
python web2py.py -S eden -R
applications/eden/static/scripts/tools/compile.py
apache2ctl restart

maintenance

This script is used to put the site into 'maintenance' mode & restore it
to normal operations. It is usually called from the
clean & compile scripts.

#!/bin/sh
if ["$1" != "off"]
then
 a2dissite maintenance
 a2ensite production
 cd ~web2py && sudo -H -u web2py python web2py.py -K eden -Q
>/dev/null 2>&1 &
else
 killall -u web2py python
 a2ensite maintenance
 a2dissite production
fi
apache2ctl restart

backup

This does a dump of the SQL database so that it can be backed-up to
tape. It is usually called from Cron.

#!/bin/sh
NOW=$(date +"%Y-%m-%d")
mysqldump sahana > /root/backup-$NOW.sql
OLD=$(date --date='7 day ago' +"%Y-%m-%d")
rm -f /root/backup-$OLD.sql

MAINTENANCE SITE

This is an alternate Webserver configuration which blocks user access
to the application so that upgrades can be done safely. Users see a
simple holding page which asks them to try again later. This is (de-
)activated by the 'maintenance' script, which is usually called from
the 'pull' script.

T ip: It is still possible for administrators to access phpMyAdmin for
MySQL database administration whilst the application is offline.

UPGRADES

Simple upgrades can be done by running

git pull upstream

If there is a database migration required then this will require extra
work. It is highly recommended that Production instances use a
Development (and ideally a User Acceptance Testing) instance to
practice data migration scripts on. This migration should be done using
a copy of the Production database.

When making code customizations, it is best to do this in a branch of
the code and then pull that code to the server, rather than editing files
directly on the server:

36

TROUBLESHOOTING UPGRADES

Upgrading the version of Sahana Eden or enabling more modules may
require updating configuration settings or installing/upgrading library
dependencies.

Update configuration settings file

A new version of Sahana Eden may have new settings in 000_config.py
that need to be merged with your current choices. After updating
Sahana Eden, compare the copy of 000_config.py in deployment-
templates with the site's copy in models. Merge in added and modified
lines.

Missing software packages

A new version of Sahana Eden or a newly-enabled module may require
software packages that were not included in the original installation.
Optional packages may be needed to make use of new features. The
latest list of required and optional packages is on the wiki:

http://eden.sahanafoundation.org/wiki/InstallationGuidelines/Windows/Developer/Manual

For optional features that require missing packages, warnings will be
printed when the Web2py server is started that list the features and
the packages they need. If you don't need this functionality, then these
can be safely ignored.

If missing packages are required then attempting to run the application
will result in an error ticket with a message saying that this package
was not found.

Web2py version

Since Sahana Eden extends Web2Py, and the two are both undergoing
rapid development, the revision of Web2Py can be critical. Whilst the
latest 'bleeding edge' version of Web2Py is usually stable, some
Web2Py revisions have bugs which break a part of Sahana Eden. You
can try upgrading to the latest revision of Web2Py or else
downgrading to an older version which does not exhibit this bug.

Sometimes a new version of Sahana Eden may use features from a
more recent Web2py than the currently installed version. This typically
leads to an error ticket with a message indicating that some item was
not found. Update to either the latest Web2py, or the latest known-
stable Web2py revision, the version number for which can be found in
private/update_check/eden_update_check.py

It is also sometimes posted in the #sahana-eden IRC channel topic (see
the Community chapter for connecting to IRC).

37

http://eden.sahanafoundation.org/wiki/InstallationGuidelines/Windows/Developer/Manual

38

12. DATA EXPORT

There are many reasons why there may be a need to export data.
Whether it is for sharing data with another application or organization,
or whether it involves physically moving data to another Sahana Eden
installation such as from a Test to a Production environment.

Sahana Eden can export data in a variety of data formats, e.g. as
spreadsheet (XLS, CSV), PDF, KML and a variety of XML formats.

Some export formats are limited to specific resources. For example,
hospital records would support EDXL-HAVE export whereas person
records would support PFIF export.

Common export formats can be accessed from the icon buttons
above the list view. Export the data by clicking on the respective icon.

 Other export formats can be accessed by appending the extension to
the URL, e.g.:

For an EDXL-HAVE feed:

/eden/hms/hospital.have

For a PFIF feed:

/eden/pr/person.pfif

For more details see: Appendix "Web Services".

39

EXTENDING SAHANA
EDEN
13. INSTALLING A DEVELOPER
ENVIRONMENT
14. CUSTOMIZATION
15. BUILDING A NEW MODULE
16. FURTHER READING

40

13. INSTALLING A DEVELOPER

ENVIRONMENT
When making code customizations, it is best to do this in a local copy
of the code, test thoroughly, and then pull that code to the server,
rather than editing files directly on the server. Keeping the code
modifications under revision control greatly eases the process of
upgrading the software while keeping your customizations intact.

A development environment can be installed on Windows, Linux or Mac
- we have active developers using all three platforms. Detailed
instructions can be found on the Sahana Eden wiki:

http://eden.sahanafoundation.org/wiki/InstallationGuidelines

To keep the setup simple, we recommended using the default SQLite
database and the default Web2py internal web server.

Note: Unless using a set of prepopulate data which includes an Admin
user, the first user to register on a new Sahana Eden installation gets
administrator rights. You will need this to be able to view any error
tickets that are generated, and to examine the database using
Web2py's interface.

GITHUB

In order to contribute code you should have your own repository on
GitHub, a community collaboration platform based on the Git
distributed version control system.

Start by registering here:

https://github.com/signup/free

Add your SSH Keys:

http://help.github.com/win-set-up-git/

You can then fork the Eden trunk:

https://github.com/flavour/eden/fork_select

You can then clone this branch down locally to work on:

cd web2py/applications
git clone git@github.com:mygitusername/eden.git

Note: If you already have a local clone of trunk, then you can use this
instead of requiring a fresh clone by modifying the source URL
in eden/.git/config:

[remote "origin"]
 url = git@github.com:mygitusername/eden.git

Then set the T runk branch as the 'upstream' remote:

cd eden
git remote add upstream git://github.com/flavour/eden.git

This allows you to pull the latest changes to trunk using:

git pull upstream master

41

http://eden.sahanafoundation.org/wiki/InstallationGuidelinesDeveloper
http://github.com/
https://github.com/signup/free
http://help.github.com/win-set-up-git/
https://github.com/flavour/eden/fork_select

RECOMMENDED DEVELOPMENT TOOLS

For easy inspection and debugging of both CSS and JavaScript when
working on UI improvements, use the Firebug plugin for Firefox.

For serious developers, we recommend Eclipse as a graphical debugger
because of the enhanced visibility gained by setting breakpoints and
stepping through the server-side Python code.

VIRTUAL MACHINE

A pre-configured Virtual Machine is available to allow a developer to
get operational quickly, which is great for training events to both
reduce time on installation and it also gives all participants a consistent
environment. The Virtual Machine instructions can be found here:

http://eden.sahanafoundation.org/wiki/InstallationGuidelinesVirtualMachine

42

https://getfirebug.com/downloads
http://eden.sahanafoundation.org/wiki/DeveloperGuidelinesEclipse
http://eden.sahanafoundation.org/wiki/InstallationGuidelinesVirtualMachine

14. CUSTOMIZATION

Sahana Eden is developed using Python and JavaScript. However,
amazing as it may sound, simple customization can be done without
any knowledge of either programming language. In fact there is just a
single concept which is essential to understand before diving in:
whitespace matters.

WHY WHITESPACE MATTERS

Unlike many programming languages, Python code is sensitive to
whitespace. To avoid bad results as an impact of this sensitivity, make
sure that you indent the code in .py files properly. This is easiest if you
configure your text editor to replace Tabs with 4 spaces:

The screenshot is from Notepad++, a recommended editor on
Windows, where you can find this by going to Settings -> Preferences...
-> Language Menu/Tab Settings -> Tab Settings (group)

DEBUG MODE

As a developer, you should normally run the application in Debug
mode.

This means that JavaScript & CSS files are loaded in separate,
uncompressed versions and also automatically reloads the core models
in modules/s3db. Changes to other files in modules/ still require
a restart of Web2Py to become visible.

models/000_config.py

settings.base.debug = True

WHICH FILE DO I EDIT?

Sahana Eden runs as a Web2Py application. The code is in the folder:

web2py/applications/eden

Inside that folder are folders for Models (define the data structure),
Controllers (provide URLs to enable access to the data) & Views (HTML
templates).

Each module within Sahana Eden will normally consist of one of each of
these files:

Model: modules/s3db/modulename.py
Controller: controllers/modulename.py
View: views/modulename/index.html

In order to know which file to edit in order to change a particular
function, you need to look at the URL. The Web2Py web framework
maps URLs as follows:

http://host/application/controller/function

So, if you want to edit the Home page with the URL:

43

http://notepad-plus-plus.org

http://host/eden/default/index

This implies that you should look at the file
eden/controllers/default.py and the index function
within it which can be found by searching for the function title "def
index():"

T ip: Sahana Eden makes heavy use of integrated resource controllers
so the typical mapping is:

http://host/eden/module/resource

The resource refers to a table with the name module_resource in
the file modules/s3db/<module>.py

TEMPLATES

When making customizations, it is better if you can retain compatibility
with the upstream trunk code, so that you can 'pull' updates with less
chance of conflicts. For this reason it is better if all your
customizations are contained within your own folder
inside private/templates/ eg. private/templates/template_name.

If, on the other hand, you are fixing a bug or developing functiona lity useful to other
Sahana users, then that should be done in the core code & your changes submitted
upstream via a 'pull request'. See the G it chapter.

To set the template used by Sahana Eden, edit this line in the
file models/000_config.py

settings.base.template = "template_name"

Once you have created a folder for your template, you can place some
of these files in:

Module loader:
private/templates/template_name/__init__.py
Main Configuration:
private/templates/template_name/config.py
Prepopulate Configuration:
private/templates/template_name/tasks.cfg
CSS
Configuration: private/templates/template_name/css.cfg
Custom Controllers:
private/templates/template_name/controllers.py
Custom Menus:
private/templates/template_name/menus.py
Custom Layouts:
private/templates/template_name/layouts.py
Custom Views:
private/templates/template_name/views/

Not all of these files are needed in every template. We will now go
through what each of these are used for:

__init__.py is needed if there are custom controllers, menus or
layouts. It is normally empty.

config.py is needed if there are any custom deployment_settings
which are common to all instances of this deployment (e.g. production,
Test, Demo &/or T raining) or customizations to standard controllers.
Most templates will contain one of these unless the folder is just a
collection of pre-populate files or just a theme.

44

tasks.cfg is a collection of pre-populate CSV files. These are used
to configure the base system with lookup lists (e.g. Organization
Types) and Map configuration. They can also contain Demo data. The
CSV files can be in this folder, another folder or even downloaded
from a remote server.

css.cfg is a collection of CSS files which are loaded in every page
for this Theme (a template folder is often linked to a theme of the
same name, however this is not mandatory. Many templates can share
a common theme). In non-debug mode the files are compressed
together and downloaded as one file, whereas in debug mode they are
downloaded individually. The CSS files can be from libraries, such as
jQueryUI, from other templates, such as the default template, or
custom ones for this theme.

controllers.py allows the creation of fully custom controllers.
The most common usage is to provide a fully custom homepage
(default/index). Additional pages may be created as
default/custom/mycustompage.

menus.py allows custom menus.

layouts.py allows custom design for menus.

views/ folder allows custom views. For some core system pages
which are commonly changed (such as the homepage, About, Contact,
Help), it is sufficient to simply drop an HTML file into this folder. A
Theme will normally have a customized layout.html here.

HOME PAGE AND OTHER SIMPLE VIEWS

One of the common changes that needs to be made is modifying the
main home page, individual module home pages and the
Contact/About pages.

Some of these customizations can be done in pure HTML by editing
the View files. For example, you can edit the contact page at URL
/eden/default/contact by copying the file:
views/default/contact.html to
private/templates/template_name/views/contact.html

This is a normal HTML page other than the part(s) inside double curly
braces {{...}} which indicate Python code.

{{extend "layout.html"}}

This part should not be edited as it loads the generic page layout
from views/layout.html or, if using a custom theme,
from private/templates/template_name/views/layout.html.

Most pages, such as the main home page, include the results of Python
code executed in the controller file. This is executed before the view
template is parsed and dynamically generates content which is inserted
in the curly brackets inside the HTML. The controller file for the main
home page is controllers/default.py

The simple way to start customizing this page is to ignore some or all
of this dynamic content and replace it with simple HTML content in the
view template:

private/templates/template_name/views/index.html

45

T ip: Sahana Eden doesn't make use of many custom views in the core
modules – normally the generic view templates within the views/
folder are used, such as _create.html and _list.html.
Modifications are made by configuration in the Model and Controller
files. However it is possible to customise these views by adding these
into private/templates/template_name/views/

EDIT A FIELD LABEL

This can be done by editing the 'label' attribute in the field properties
within the model.

Example:

Change the text 'Year' to 'Year Founded' in the form at URL:
/eden/org/organisation/create

You can lookup the fieldname in the main model
 modules/s3db/org.py:

tablename = "org_organisation"
table = define_table(tablename,
 ...
 Field("year", label = T("Year"),

Since we are putting our customizations into our Template, we need
to customize the controller in
private/templates/template_name/config.py:

def customise_org_organisation_controller(**attr):
 table = current.s3db.org_organisation
 table.year.label = T("Year Founded")
 return attr
settings.customise_org_organisation_controller =
customise_org_organisation_controller

T ip: The strings are internationalized by wrapping them inside T (). If
you change the labels then you need to update any translation files
that you are using, even if the translation remains the same. (Note
the UK English spelling of variable names. Labels and other text that
appears in the user interface are standardized to US English as they
are used as identifiers for translated text.)

For consistency, you should also edit the heading of the help tooltip,
and maybe the body, if the meaning is being changed. This is found in
the 'comment' attribute:

table.year.comment = DIV(_class="tooltip",
 _title="%s|%s" % (T("Year Founded"),
 T("Year that the organization was
founded.")))),

HIDE A FIELD

It is common to want to hide a field to simplify a form to allow
efficient collection of the data that you need. Hiding a field is safer
than removing it completely from the database as it eases upgrades
by eliminating the need for database migration.

46

Example:

Hide the 'Code' field from the form at URL: /eden/org/office/create

Since we are putting our customizations into our Template, we need
to customize the resource in
private/templates/template_name/config.py:

def customise_org_office_resource(r, tablename):
 table = current.s3db.org_office
 table.code.readable = False
 table.code.writable = False

settings.customise_org_office_resource = customise_org_office_resource

T ip: Python variables are case-sensitive, as are the boolean values
'T rue' and 'False'.

ADD A NEW FIELD

If you need to collect extra data for an existing resource, then it isn't
currently possible to do this within a template. However it is simple
and relatively safe to add an extra field to the model for that table.

Example:

Add the ability to store a Facebook page for Organizations.

Look at modules/s3db/org.py and add the new field to:

tablename = "org_organisation"
table = define_table(tablename,
 ...
 Field("facebook", label=T("Facebook Page")),

T ip: Be careful to add trailing commas to each line in the table
definition as this is a common source of errors.

47

EDIT THE MENUS

If you wish to edit the left (second-level) menus (e.g. relabeling,
reordering or hiding entries) then create the file
private/templates/template_name/menus.py. We can
copy from modules/s3menus.py and override the menu for just
the modules that we need.

Example:

In the Organization Registry Module, re-name 'Offices' as 'Venues' and
hide the 'Search' & 'Map' options:

from s3layouts import *
try:
 from .layouts import *
except ImportError:
 pass
import s3menus as default

class S3OptionsMenu(default.S3OptionsMenu):
 """ Custom Controller Menus """
 def org(self):
 """ ORG / Organization Registry """

 return M(c="org")(
 M("Organizations", f="organisation")(
 M("New", m="create"),
 M("List All"),
 M("Search", m="search"),
 M("Import", m="import")
),
 M("Venues", f="office")(
 M("New", m="create"),
 M("List All"),
 #M("Map", m="map"),
 #M("Search", m="search"),
 M("Import", m="import")
),
)

You can see this change in the Organization Registry Module at URL:
/eden/org

48

T ip: The # character comments out the text after it on that line so
that Python will ignore it.

49

15. BUILDING A NEW MODULE

This chapter walks you through the process of adding a new module.
This may sound like a big project, but the Sahana Eden Framework
supports Rapid Application Development (RAD), which allows simple
functionality to be added easily.

EXAMPLE: TRAINING COURSES

Imagine that we want to add the capability to manage training courses
from within our Sahana Eden instance. Instead of installing a separate
package (such as Moodle) for this, we have decided to integrate this
into our Sahana Eden instance so that:

The Human Resource Management (HRM) module can use training
records of personnel
We don't need to define data (e.g. users, locations, training
courses) in multiple systems
We can use Sahana Eden's messaging, scheduling and mapping
capabilities for the training courses

NOTE: This T raining Course module is only an example as Sahana Eden
includes functionality for managing trainings within the HRM module.

IDENTIFY THE RESOURCES

The first step in constructing a new module is to identify the Resources
involved.

Here, the primary Resource for the T raining module will be a 'course'.
Each course includes:

the date, time and site where the course will be held
the facilitator
participants
course materials

DEFINE THE BASIC DATA MODEL

We'll start by defining a database table with a few simple fields:

T ip: By convention, database tables in Sahana Eden are named as
'module_resource'. Here, the module is 'training' and the resource is
'course'.

Create a new file in the models/ folder called training.py and
add the following code (you may leave out the comments after the #
characters).

models/training.py

tablename = "training_course"
db.define_table(tablename,
 # A 'name' field
 Field("name"),
 # The start time
 Field("start"),
 # The facilitator
 Field("facilitator"),
 # This adds all the metadata to store
 # information on who created/updated
 # the record & when
 *s3_meta_fields()
)

50

T ip: If your configuration in models/000_config.py has
settings.base.migrate = True
then Web2py will automatically 'migrate' your database: creating and
modifying tables according to your model changes.

ADD A CONTROLLER

Next we add a Controller, which provides access to this resource.

Create another new file, this time in the controllers/ folder:

controllers/training.py

def course():
 return s3_rest_controller()

The s3_rest_controller function provides all the Sahana Eden
framework support needed to access the resource, including automatic
loading of the respective model definitions. You should now have a
working module. You can see the CRUD (Create, Read, Update, Delete)
user interface here:

http://127 .0.0.1:8000/eden/training/course

T ip: You will need to register for a login to be able to create new
courses. The 1st user to register gets the administrator role.

All resources can be accessed in other formats, such as XLS, XML or
JSON, just by appending the representation name to the URL, e.g

http://127 .0.0.1:8000/eden/training/course.xls
http://127 .0.0.1:8000/eden/training/course.xml
http://127 .0.0.1:8000/eden/training/course.json

REPORTS

Pivot table reports with bar charts and pie charts can be generated
for all resources, by appending the method name to the URL, e.g.
http://127 .0.0.1:8000/eden/training/course/report

FIELD TYPES

By default fields are created with type string, however we may wish
to use other data types. All fields have both client-side widgets &
server-side validation automatically added based on their data type.

models/training.py

tablename = "training_course"
db.define_table(tablename,
 Field("name"),
 # A date type field (includes widget & validation)

51

http://127.0.0.1:8000/eden/training/course
http://127.0.0.1:8000/eden/training/course.xls
http://127.0.0.1:8000/eden/training/course.xml
http://127.0.0.1:8000/eden/training/course.json
http://127.0.0.1:8000/eden/training/course/report

 s3base.s3_date(),
 Field("facilitator"),
 # This is a file attachment that contains
 # a welcome pack that will be sent to each
participant:
 Field("welcome_pack", "upload"),
 *s3_meta_fields()
)

FIELD LABELS

Field labels are automatically generated from the field names, however
we are able to customize these by adding a 'label' attribute.

models/training.py

tablename = "training_course"
db.define_table(tablename,
 Field("name"),
 s3base.s3_date(label="Start Date"),
 Field("facilitator"),
 Field("welcome_pack", "upload"),
 *s3_meta_fields()
)

52

INTERNATIONALIZE FIELD LABELS

By wrapping a string in the T(...)function they will be added to
language files which can be translated, allowing the system to be
localized into other languages. To localize the field labels we need to
provide a 'label' attribute with the string wrapped in T(...), even if
the English version of the label is the same as the automatically
generated one.

models/training.py

tablename = "training_course"
db.define_table(tablename,
 Field("name",
 label=T("Name")),
 s3base.s3_date(label=T("Start Date")),
 Field("facilitator",
 label=T("Facilitator")),
 Field("welcome_pack", "upload",
 label=T("Welcome Pack")),
 *s3_meta_fields()
)

ADD LINKS TO OTHER RESOURCES

The course resource needs connections to existing resources: people &
sites./p>

These are represented in SQL databases as 'Foreign Keys' which are
usually defined in Sahana Eden by using 'Reusable Fields' to make the
process simple.

We can link to a person by adding a person_id to the table
definition in the model:

models/training.py

tablename = "training_course"
db.define_table(tablename,
 Field("name",
 label=T("Name")),
 # Link to the Person Resource
 s3db.pr_person_id(label=T("Facilitator")),
 s3base.s3_date(label=T("Start Date")),
 Field("welcome_pack", "upload",
 label=T("Welcome Pack")),
 *s3_meta_fields()
)

53

Note how we over-ride the default label to be more appropriate to
this context.

The site link is a little more complex as this is a Super Entity:

models/training.py

tablename = "training_course"
db.define_table(tablename,
 Field("name",
 label=T("Name")),
 s3db.pr_person_id(label=T("Facilitator")),
 # Link to the Site resource
 s3db.super_link("site_id", "org_site",
 label = T("Venue"),
 # superlink fields are normally
invisible
 readable = True,
 writable = True,
 # we want users to see the site name
 # rather than just the ID
 represent = s3db.org_site_represent,
),
 s3base.s3_date(label=T("Start Date")),
 Field("welcome_pack", "upload",
 label=T("Welcome Pack")),
 *s3_meta_fields()
)

Note that we make use of a 'represent' function so that users see site
names in the drop-down and not just integer IDs

T ip: You will need to create a site (e.g. through /eden/org/office/create)
to be able to see this

54

http://eden.sahanafoundation.org/wiki/S3/S3Model/SuperEntities

CRUD STRINGS

You can replace the default strings within the CRUD user interface with
custom strings for your resource.

models/training.py

s3.crud_strings[tablename] = Storage(
 label_create = T("Create Course"),
 title_display = T("Course Details"),
 title_list = T("List Courses"),
 title_update = T("Edit Course"),
 title_upload = T("Import Courses"),
 subtitle_list = T("Courses"),
 label_list_button = T("List Courses"),
 label_delete_button = T("Delete Course"),
 msg_record_created = T("Course added"),
 msg_record_modified = T("Course updated"),
 msg_record_deleted = T("Course deleted"),
 msg_list_empty = T("No Courses currently registered"))

MODULE INDEX PAGE

The "course" controller we created earlier, controls just a single page
within our new module. More pages like it can be created by adding
new controller functions. One such special controller function is the
index function which handles the index page of the module. Any links
we create to the module will be directed at this page.

controllers/training.py

def index():
 return dict()

This is a minimal controller function which passes control to a View
template.

The default view template which is called has the same name as the
function and is located in the folder named after the controller, so
create this new file, and add the following code:

views/training/index.html

{{extend "layout.html"}}
<h2>Welcome to the Training Module</h2>

 List Training Courses

Note that this is normal HTML code, apart from sections which are
enclosed within {{...}}, which are normal python code, other than
the special terms 'extend' & 'include' which allow HTML template
fragments to be reused within each other.

T ip: The URL() function is an HTML helper which is used to generate a
URL to access the course resource without hardcoding the application
name.

MENUS

55

There are two levels of menu within the system:

The top-level 'Modules Menu' is visible in all modules.
Underneath that, each module has its own menu for for module-
specific navigation.

To change the top-level Modules menu, edit the following file and add
a new entry for the T raining Course module inside the 'modules' data
structure:

models/000_config.py (at end of file)

settings.modules["training"] = Storage(
 name_nice=T("Training"),
 module_type=2)

Note: models/000_config.py is not in the version control
system, and so is not changed when the software is updated. It is this
instance's working copy, with local settings, of the configuration file.
The template for this file is:
private/templates/000_config.py

Adding the module to settings.modules through 000_config.py is
just a quick way of making a small modification to the template
currently in use. Most implementations of Sahana Eden will define their
own template, in which the modules to be used will be listed. See the
customisation and configuration chapters of this book for further
details. When a new module is ready to be added to the main Eden
code base, the above code should be removed from
000_config.py and inserted into the sequence of similar
operat ions in the default template
(private/templates/default/config.py). By convention,
the default template has all modules enabled (except experimental
ones and those under development). Implementations then disable
unwanted modules when they define their own templates.

To add a menu for use within the new training module, edit the
following file and add a new function within the S3OptionsMenu class,
which provides access to the 'course' controller. Note that the
S3OptionsMenu class already exists - you just need to add a new
function within it.

modules/s3menus.py

class S3OptionsMenu(object):

 def training(self):
 return M(c="training")(
 M("Courses", f="course")(
 M("Create", m="create"),
 M("Import", m="import"),
 M("Report", m="report"),
)
)

You also need to add the training module to your list of active
modules:

private/templates/default/config.py

settings.modules = OrderedDict([
 ...
 ("training", Storage(
 name_nice = T("Training"),
 module_type = 10,
)),
 ...

56

COMPONENTS

Note: This section is significantly more advanced than the previous
example, so should only be tackled if you're feeling comfortable with
the material so far.

We'd like to be able to record information relating to each participant
in the course, such as whether they actually attended and what grade
they attained.

To do this, we need to build a 'link' table between the participants and
the course.

The natural way to do this within Sahana Eden is to make the link
table a 'component' of the course. The course is the 'primary
resource', and participants are a 'component' of the course.

T ip: See the Resource Model chapter in the appendices for an
explanation of the resource and components concept.

Model

Edit the following file and add this after the existing code:

models/training.py

represent = S3Represent(lookup = tablename)
course_id = S3ReusableField("course_id", "reference %s" % tablename,
 label = T("Course"),
 ondelete = "RESTRICT",
 represent = represent,
 requires = IS_ONE_OF(db,
 "training_course.id",
 represent),
)

This defines a 'reusable field' which can be added to other table
definitions to provide a foreign key reference to the course table:

Note that this uses a 'represent' function to allow a record in the
course table to be represented by its name (The S3Represent class
allows bulk lookups for scalability).

It also adds a 'requires' validator function. This provides both server-
side validation and a client-side widget (in this case a dropdown of
records in the course table).

Define a set of options for the course grade attained by each
participant:

models/training.py

course_grade_opts = {
 1: T("No Show"),
 2: T("Failed"),
 3: T("Passed")
}

These options associate a number, which is what will be stored in the
database, with a label meaningful to the users.

57

Define the participant component resource, making use of the course
reusable field and grade options we just defined. (Note that we make
use of another validator -- the client-side widget is again a dropdown,
although here the options come from the grade options dictionary
rather than a database table.)

models/training.py

tablename = "training_participant"
db.define_table(tablename,
 course_id(),
 s3db.pr_person_id(label=T("Participant")),
 Field("grade", "integer",
 label=T("Grade"),
 requires=IS_IN_SET(course_grade_opts),
),
 *s3_meta_fields()
)

Note, that unlike before, no "represent" parameter is required to
specify the mapping from grade labels to numbers. This is because the
IS_IN_SET requirement (a part of Web2py) automatically does this for
you if you give it a dictionary.

s3.meta_fields() is a helper that provides a set of fields commonly
needed in each table, such as what user created the record and when
it was created.

T ip: Functions, classes, and values that start with 's3' or 'S3' are part of
the Sahana Eden framework - have a look for more of these.

Tell the framework that a participant is a component of a course:

models/training.py

s3db.add_components("training_participant",
 training_course = "course_id")

Controller

There is no need to create a separate REST controller to manage the
component, since it will always be accessed via the existing course
controller, however we must then extend the controller with 2 new
elements to allow the Sahana Eden framework to display the
component: 'tabs' and an 'rheader'.

T abs are how the framework provides access to the different
components in a web page for the primary resource.

The 'resource header' is a section of HTML that provides a summary
of the primary resource record, in this case the course. This is
displayed above the tabs so that when each component record is
being viewed, its parent record is also visible at the same time.

Edit the following file, adding this content above the course controller:

controllers/training.py

def course_rheader(r, tabs=[]):
 if r.representation != "html":
 # RHeader is a UI facility & so skip for other formats
 return None
 if r.record is None:
 # List or Create form: rheader makes no sense here
 return None

 tabs = [(T("Basic Details"), None),
 (T("Participants"), "participant")]
 rheader_tabs = s3_rheader_tabs(r, tabs)

 course = r.record

 rheader = DIV(TABLE(
 TR(
 TH("%s: " % T("Name")),

58

 course.name,
 TH("%s: " % T("Start Date")),
 course.start,
),
 TR(
 TH("%s: " % T("Facilitator")),
 s3db.pr_person_represent(course.person_id),
)
), rheader_tabs)

 return rheader

Modify the previous course controller with this code:

controllers/training.py

def course():
 return s3_rest_controller(rheader=course_rheader)

T ip: rheader is simply a variable passed through the REST controller
unaltered & then serialized as rheader.xml() in the views.

FURTHER OPTIONS

The following are some possible directions for this module, although
they are currently beyond the scope of this tutorial. Please feel free to
experiment with implementing them!

Instance-Specific Components

If a course is offered multiple times, most of the course details should
be the same between instances, so courses could be refactored into a
generic course (e.g. in a course catalog) with static information (e.g.
name, and maybe the course materials), and course instances
representing each offering of the course (date / time, site, and
participants would be associated with course instances). The generic
course would be a primary resource, and course instances would be its
components. With this, we would have two levels of resource and
component: a generic course has instances, and each instance has
participants.

Authorization

If we need to define a 'role' to manage the training courses, so that
only people who have that role can modify courses, or a facilitator role
that is allowed to set grades. That can be done by editing the file:
private/templates/default/auth_roles.csv

Messaging

We could add a button to a course's web page, to mail the course
materials to the participants. See how the dispatch() custom
method does this within the Incident Reporting System (IRS) by calling
msg.compose().

Scheduler

We could set a reminder to mail the facilitator two weeks before the
course start so they can make sure the course materials are up to
date and mail them out to the participants.

The Scheduler API is defined is modules/s3/s3task.py and tasks
are defined in models/tasks.py.

Mapping

59

We could display a map of all upcoming training courses. This is done
by calling gis.show_map() from modules/s3/s3gis.py.
There are further instructions on the wiki - search for the Developer
Guidelines on GIS.

Conditional Model Loading

Not all of the Eden data models may be needed for the processing of
a particular request. For optimum performance, the S3 framework
provides a mechanism to only load those models which are needed.

Data models are implemented as Python modules in modules/s3db,
which contain the database table definitions. Apart from the table
definitions, modules can also define global functions and variables.

In modules/s3db/skeleton.py you can find a comprehensively
documented example for how to implement such a module.

T ip: When doing this we need to ensure that the model is loaded
when-required, such as in our represent function, by accessing it as
s3db.training_course, or in order to detect cases where it has
been disabled:

table = s3db.table("training_course")
if table is not None:
 # Code that depends on training_course
 ...
else:
 # Alternative code
 ...
Independent code
...

Database Abstraction Layer

When getting deeper into the code, you'll noptice that we use
Web2Py's Database Abstraction Layer (DAL) to do a SQL query.The
variable db is an instance of the DAL class, which represents a
database. Queries are written in a syntax that is much like a Python
expression, but not quite. Look at the Web2Py book
(http://web2py.com/book) for more on the DAL.

60

http://web2py.com/book

16. FURTHER READING

This manual is not designed to teach you Python, Web2Py, or
Javascript as we encourage you to dive straight into Sahana Eden code
to learn as you go. However this chapters provide additional reference
resources for those who wish to get additional skills for more
significant code changes.

PYTHON

Python is a high-level scripting language suitable for rapid application
development. It has a wealth of powerful libraries available. If you're
interested in learning more about Python outside of our code, refer to
these excellent Python resources:

Dive Into Python (http://diveintopython.org)

How to Think like a Computer
Scientist (http://openbookproject.net/thinkcs/python/english3e/)

WEB2PY

Web2Py is a simple yet powerful framework to allow people to rapidly
develop secure real world applications. We like the Official Web2Py
book (http://web2py.com/book) as a resource.

Here are a few tips about Web2Py:

1. All Models are executed during every request in alphabetical
order within web2py environment

2. The Controller is executed
3. The View template is parsed
4. (HTML) page returned to client

T ip 1: Python Modules are not reloaded for every request, so if
changes are made to these files then you would need to restart
Web2Py to see the differences.

T ip 2: Because all the models are executed during every request, the
code added there should be optimized - search for 'conditional model
loading' in the code for guidance on how to do this.

JAVASCRIPT

Sahana Eden uses two JavaScript libraries: jQuery and ExtJS.

jQuery offers a simple way of adding unobtrusive client-side
interactivity to widgets. It has a wealth of plugins available (some of
which we copy to static/scripts/S3, the Amazon Simple Storage
Service) and excellent documentation at http://docs.jquery.com

ExtJS provides some very advanced UI components that are primarily
used for the Map. It has a wealth of plugins available (some of which
we copy to static/scripts/S3, the Amazon Simple Storage Service) and
excellent documentation at http://docs.sencha.com/ext-js/3-4/.

SAHANA EDEN BUILD AND DEBUG TIPS

61

http://diveintopython.org
http://diveintopython.org
http://www.web2py.com/book
http://docs.jquery.com
http://docs.sencha.com/ext-js/3-4/

For end-user performance gains, Sahana Eden minimizes and
compresses the CSS and JavaScript. While this approach works well for
optimized end-user performance, to debug the CSS and JavaScript you
should enable debug mode in models/000_config.py in your
Sahana Eden server with the following setting:

settings.base.debug = True

Once any changes to the CSS and JavaScript are working, then you
can minimizes and compresses the CSS and JavaScript using:

static/scripts/tools/build.sahana.py

Although this uses a web service, you get better results by
downloading a local version of the Closure Compiler (a tool for making
JavaScript download and run faster) to static/scripts/tools.

T ip: It is also possible to quickly view a single page in debug mode by
adding the ?debug=1 variable to the end of a URL.

62

http://code.google.com/closure/compiler/

MEETING THE
SAHANA COMMUNITY
17. SAHANA SOFTWARE FOUNDATION
18. GETTING HELP
19. GETTING INVOLVED
20. CONTRIBUTING CODE
21. WHERE TO GO NEXT

63

17. SAHANA SOFTWARE

FOUNDATION
Sahana Eden is a project of the Sahana Software Foundation (SSF),
which is dedicated to the mission of saving lives by providing
information management solutions that enable organizations and
communities to better prepare for and respond to disasters. SSF
provides different software tools to supplement the the process of
disaster mitigation and response. SSF provides governance and
direction to the Eden project among others.

For more, visit: http://www.sahanafoundation.org

MEMBERSHIP

The SSF is supported by members who have contributed and continue
to support the to SSF's projects. These members include:

Disaster Management practitioners who have used
Sahana software tools.
Commercial companies that develop and support
Sahana software.
Academics who use Sahana software in teaching and research.
Volunteer software developers, translators, testers and others.

If you are interesting in becoming a member please contact
community@sahanafoundation.org

EVENTS

SahanaCamps

SSF runs SahanaCamps to bring disaster management and relief
professionals together with software deployers and developers to
explore the use of Sahana software through simulations and
participatory discussions. SahanaCamps also provide technical training
for software developers wanting to deploy or contribute to the
Sahana Software Foundation. SahanaCamps have been held in India,
Taiwan, Vietnam, Portugal and the USA.

Google Summer of Code

Google Summer of Code (GSoC) allows college and university students
to learn professional software development skills and develop code
that will be used in live products. SSF has participated in the Google
Summer of Code internship program every year since 2006.
Experienced SSF software developers mentor the students to provide
a rich learning experience.

For more information on Google Summer of Code, go to:
http://code.google.com/soc/

Google Code-in

Google Code-in (GCI) is a program to give high school students the
opportunity to participate in open source projects. SSF participated in
the 2010 and 2011 Google Code-in, in which students from all over the
world completed small tasks including testing, code reviews, bug fixing,
translation, and writing documentation.

64

http://www.sahanafoundation.org
http://code.google.com/soc/

For more information on GCI, go to:
http://code.google.com/opensource/gci

65

http://code.google.com/opensource/gci

18. GETTING HELP

There are several options for getting the support you need to use
Sahana Eden, ranging from basic assistance from the voluntary
community through professional support.

MAILING LIST

You can contact the mailing list to ask any questions you may have
about Sahana Eden. This is the best way to engage with the entire
Sahana Eden community, get answers to any questions you may have
and share the work you are doing with Sahana Eden.

Details on the list are found
here: http://eden.sahanafoundation.org/wiki/MailingList

WEB CHAT

Real-time communication can help facilitate allow more rapid discussion
of ideas. You can join the Sahana Eden Internet Relay Chat (IRC) channel
to chat directly with members of the community.

If you have an IRC client you can join #sahana-eden channel on
irc.freenode.net. Otherwise you can go
to http://webchat.freenode.net/?channels=sahana-
eden&uio=d4

Please be aware that people on the Web Chat may be busy or
otherwise occupied and it may be useful to also send an email with any
queries you have to the mailing list.

For more information,
see: http://eden.sahanafoundation.org/wiki/Chat

MONTHLY COMMUNITY CALL

The Sahana community also gets together on monthly voice calls to
discuss ongoing work, new projects, upcoming events and other topics.
This call is open to everyone.

For more information,
see: http://wiki.sahanafoundation.org/doku.php/community:call or
contact: community@sahanafoundation.org.

WIKI

The Sahana Eden wiki contains detailed technical
documentation, instructions for deploying the software, guides
to contributing to the project and blueprints for future work. It is
maintained by community member. You are welcome to register for an
account to help improve and extend the wiki

The wiki is at: http://eden.sahanafoundation.org

REPORTING BUGS

You can help improve Sahana Eden by reporting any bugs you find in
the software. To report a bug go
to: http://eden.sahanafoundation.org/newticket

66

http://eden.sahanafoundation.org/wiki/MailingList
http://irc.freenode.net
http://webchat.freenode.net/?channels=sahana-eden&uio=d4
http://eden.sahanafoundation.org/wiki/Chat
http://wiki.sahanafoundation.org/doku.php/community:call
http://eden.sahanafoundation.org
http://eden.sahanafoundation.org/newticket

This ensures that these bugs can be fixed in future releases of the
Sahana Eden.

Some things to remember while filing a bug report:

1. Please be explicit about what you were trying to do when you
encountered the bug and what module you are using. A URL
(website address) is very useful.

2. Be sure to write in detail the steps to reproduce the bugs. It
would also be helpful if you could write out what your trying to
achieve when you encountered the bug. For instance, if you were
filling out a form and the application crashed as soon as you hit
submit, it would helpful to put the data you were trying to put in
and the module you were in the bug report.

3. You could also check the wiki for some information, perhaps the
bug you encountered is unresolved issue which the developers
are aware of. It also be possible that the feature might not be
complete yet.

4. If you are a developer, make sure you have the latest version of
the code. It is possible that the issue you are facing has been
resolved.

5. Describe the environment you are running the system on in the
bug report. If you can, please include the operating system, the
browser, the version of Python you have, the Web2Py version,
Sahana Eden revision and Python libraries installed. Listing out
everything may be a little tedious, but the more specific you can
be, the easier it will be to fix the bug.

Refer to http://eden.sahanafoundation.org/wiki/BugReportingGuidelines
before reporting a bug.

PROFESSIONAL SUPPORT

Unpaid volunteers from the Sahana Eden community can provide a
basic level of support for deploying and using Sahana Eden. If you
require more comprehensive support and guaranteed
response, professional companies are available. Both AidIQ
(www.aidiq.com) and Respere (www.respere.com) provide deployment,
customization, hosting, training and support for Sahana Eden
solutions.

67

http://eden.sahanafoundation.org/wiki/BugReportingGuidelines
http://www.aidiq.com
http://www.respere.com

19. GETTING INVOLVED

Getting involved in Sahana Eden is a great way to support work in
Disaster Management. You can contribute in a variety of ways.

SOFTWARE DEVELOPMENT

If you are a software developer who is interested in contributing to
Sahana Eden there are a wide range of projects whcih you can get
involved in.

See:
http://eden.sahanafoundation.org/wiki/Projects

DOCUMENTATION

The wiki and this book form the backbone of the documentation
available for Sahana Eden. There is alway scope for improving and
extending the documentation. Contributing to the documentation it is a
good way for developers to to better understand Sahana Eden. If
there is something in the documentation which is not clear to you or
is missing, you can improve it.

You can also produce screencasts which are a quick and easy way for
new users and developers to understand Sahana Eden.

TESTING

By testing Sahana Eden you can help to make it more reliable. This can
be done by writing test cases, performing manual tests and
automating tests with Selenium.

BLUEPRINTS

Blueprints allow users to share their requirements and developers to
document their ideas for Sahana Eden. Its a good way for users to
engage with the Sahana Eden community communicate their needs.

SYSTEM ADMINISTRATORS

System Administrators are essential for deployments of Sahana Eden.
They also help us manage the servers where websites, wikis and
demos are hosted. The system administration team has the
opportunity to develop their skills while assisting the community.

TRANSLATORS

Translators can help to make Sahana Eden more accessible by
translating it into multiple languages.

DESIGNERS

Designers can help to make Sahana Eden more usable by adding a
clear graphics, layout and icons to improve the user experience.

GIS EXPERTS

68

http://eden.sahanafoundation.org/wiki/Projects

GIS Experts can provide data and tools to improve GIS functionality in
Sahana Eden, to ensure that key geographical knowledge is available.

69

20. CONTRIBUTING CODE

We welcome contributions to the Sahana Eden code. Before any
contributions can be accepted, contributors must sign a Contributor
License Agreement to ensure that the code can be provided as open
source software. This protects both you as a contributor as well as
the Sahana Software Foundation. This can be downloaded at
http://wiki.sahanafoundation.org/doku.php/foundation:start#contributor_license_agreement

Sahana Eden code is hosted on GitHub at
https://github.com/flavour/eden which uses the Git distributed version
control system.

The bug tracker, which uses T rac, is at
http://eden.sahanafoundation.org/report.

USING GITHUB

The initial GitHub configuration (1 & 2) is covered in the 'Installing a
Developer Environment' chapter.

Commit your code to your local branch (3 & 4):

git commit -a
git commit -a

Before submitting it, you should ensure that it runs with the current
version of the 'T runk' branch (5):

git pull upstream master

You should also rebase it to keep the revision history cleaner and in
more logical chunks for review (6):

git rebase -i

Push your code to your GitHub branch (7):

git push

You can then use GitHub to submit a 'Pull Request' to T runk (8).

https://github.com/mygitusername/eden/pull/new/master

People subscribed to T runk can then review the changes, request any
necessary amendments before it can be accepted, and then merge
your work into T runk so that other users can benefit from your work.

70

http://wiki.sahanafoundation.org/doku.php/foundation:start#contributor_license_agreement
https://github.com/flavour/eden
http://eden.sahanafoundation.org/report
https://github.com/mygitusername/eden/pull/new/master

7 1

21. WHERE TO GO NEXT

Thank you for learning more about the Sahana Eden project. We look
forward to seeing you become more involved in our community. For
the latest news about the project please see the Sahana Software
Foundation Website (http://sahanafoundation.org).

72

APPENDICES
22. RESOURCE MODEL
23. MAPPING & GIS
24. SCHEDULER
25. SYNCHRONIZATION
26. WEB SERVICES
27. S3XML
28. GLOSSARY
29. CREDITS

73

22. RESOURCE MODEL

To manage all the complex information in a broad variety of business
processes in a flexible yet consistent way, the Sahana Eden framework
uses the concept of "resources".

A resource is a set of all database records which describe a complex
entity in the business process (such as a person or an organization, or
a request for items). Resources also provide all necessary methods to
represent, modify and analyze the data.

Records to Resources

The following pictures illustrate the relationship between records in
database tables and resources. Each Lego piece represents a single
record in the database, while the different colors and sizes symbolize
different database tables:

The next picture shows the relationship between the records - every
"organization" can have one or more "offices".

The last picture shows how each set of related records forms an
instance of the "organization" resource.

74

The database tables which are involved in a resource are called
"components" of the resource. There is always one "master"
component, typically containing the basic details, for example, a name
or identification of the entity which the resource describes.

In the user interface, the resource concept is typically represented by
navigation tabs:

This shows the "Organization" resource, with its components as
navigation tabs. Each tab handles a set of records in a different
database table. All the records in all of the tabs together form the
"Organization" resource.

The Sahana Eden Framework provides a set of integrated tools for
the implementation of resources and resource methods such as CRUD
(create, read, update, delete), Search, Mapping and Reporting, Data
Export and Import as well as Web Services. This allows developers to
rapidly develop new solutions or adapt existing modules to new
requirements.

75

23. MAPPING & GIS

Seeing data located on a Map helps decision makers to be able to
make more meaningful decisions. Sahana Eden's Mapping Client can
combine data from both it's own database & a range of external
sources to provide a rich environment for display and analysis.

The GIS community within Sahana which has it's own home on the wiki:

http://eden.sahanafoundation.org/wiki/GIS

MAP VIEWING CLIENT

Sahana Eden's mapping client is based on OpenLayers & GeoExt.

OpenLayers provides access to a wide range of data sources, from
public services like OpenStreetMap, Google Maps & Bing Maps through
to GIS services based on OGC standards like WMS & WFS or feeds
from other systems exposed as KML or GeoRSS.

GeoExt provides UI widgets to allow the user to interface with the
map.

MAP SERVICE CATALOG

These different 'Layers' are defined in Sahana Eden's 'Map Service
Catalog', from which users can select which layers should be active in
the client.

Map Layers using data from within the database simply requests the
data through Web Services formatted as GeoJSON.

If multiple markers appear at the same location then they are
'clustered' together.

A 'refresh' strategy is available to reload the layer periodically so that
a wall-mounted display can just reload the active layer(s) rather than
the static basemap.

76

http://eden.sahanafoundation.org/wiki/GIS
http://openlayers.org
http://geoext.org

SPATIAL INFRASTRUCTURE

Sahana Eden's mapping features are even more powerful when
coupled with a GeoServer installation as this can expose many
different data sources, such as Shapefiles or Topography Rasters, as
WMS or WFS for ready display in Sahana.

Another very useful tool to complete an infrastructure is MapProxy as
this allows WMS layers from external sources to be reprojected to be
compatible with other data sources (typically allowing a WGS84 service
to be accessible as an overlay with a Spherical Mercator basemap, such
as OpenStreetMap or Google Maps).

T ip: Sahana Eden supports multiple Projections, but can only display
one at a time!

This combination is what is used for the IFRC's Resource Mapping
System.

CONFIGURATION

The initial configuration is defined in models/000_config.py.
This then populates the gis_config table which is where subsequent
modification should be done for this instance.

The system configuration can be inherited for both Personal
configurations & Event configurations. There is also the option for
Country-based configurations to store the labels for the different
levels of the hierarchy.

Currently the selection of active layers from the Catalog is global, but
this is planned to be made per-Config.

LOCATION HIERARCHY

All locations are stored in the gis_location table, to which other
resources link through the location_id() reusable field (foreign
key). The location records are hierarchical through the use of 'parent'
& 'path' fields. There are optimised routines in
modules/s3/s3gis.py to populate & search these fields. This
hierarchy is flexible to accomodate different countries:

L0: Country
L1: State or Province
L2: District or County
L3: City, Town or Village
L4: Neighborhood

LOCATION SELECTOR

A Location Selector widget allows a simple location_id() reusable field in
a source to provide an inline form to be able to select existing
locations or create new ones, which includes the hierarchy & the ability
to pinpoint the location on a Map, the rough position for which can be
obtained through either GeoCoding (lookup of the entered street
address or hierarchy) or GeoLocation (detection of the current user's
location by the browser).

The widget is defined in modules/s3/s3widgets.py.

7 7

http://geoserver.org/
http://mapproxy.org

This makes use of JavaScript in
static/scripts/S3/s3.locationselector.widget.js.
(Remember that any edits won't be visible unless you are running in
debug mode or run the build script & refresh your browser cache)

API

As well as the main Mapping Client, there is an API to allow developers
to be able to display customised data output relevant to a specific
module on the Map.

This functionality is avaialble via the GIS module's show_map()
function.

A simple example for a controller function would be:

table = db.mymodule_myresource
query = (table.id > 0) & \
 (db.gis_location.id == table.location_id)
rows = db(query).select()
queries = [{name: "MyLayer",
 query: rows}]
map = gis.show_map(feature_queries=queries)
return dict(map=map)

& the view would include:

{{=XML(map)}}

Full documentation for this API can be found in the source code or on
the wiki:

http://eden.sahanafoundation.org/wiki/DeveloperGuidelinesGIS

FUTURE PLANS

There are plans to make use of optimised Spatial Queries when
PostGIS is available by extending Web2Py's DAL. This will open up a
range of possibilities for deeper analysis.

The Cube (pivot table) output is planned to be displayable on Maps -
as both Shaded Polygons and Popups within centroid Markers
containing the charts for that area.

The connection to GeoServer could be made more transparent by
making use of it's REST API.

We could include a tool to be able to browse & select WMS services,
auto-configuring an associated MapProxy to reproject, if-necessary.

78

http://eden.sahanafoundation.org/wiki/DeveloperGuidelinesGIS

24. SCHEDULER

The Scheduler allows non-interactive tasks to be run at specific times,
repeatedly at regular intervals or once asynchronously for
responsiveness of the user interface. This is required e.g. for
Synchronization and Messaging.

The Scheduler is run as a separate web2py "worker" process.

It is normally run from /etc/rc.local as:

cd ~web2py && python web2py.py -K eden -Q
>/dev/null 2>&1 &

T ip: This should normally be set to run automatically by the Installation
Script.

Scheduler logs can be checked using the appadmin interface:

http://host.domain/eden/appadmin/select/db?
query=db.scheduler_run.id%3E0

79

25. SYNCHRONIZATION

The Synchronization module allows the synchronization of data
resources between Sahana Eden instances. Synchronization jobs can be
configured to be run automatically in the background and at regular
intervals, without disrupting the current operation of the sites.

This module is part of the site administration module, and requires
administrator privileges to view or modify its configuration. The
synchronization module requires web2py revision 3566 (1.99.0) or
newer.

OVERVIEW

The synchronization process is controlled entirely by the "active"
Sahana Eden instance (master instance).

The active Eden instance runs the scheduler process, and initiates the
update requests when they are due, while the passive repository (slave
instance) merely responds to these requests.

The active Eden instance first downloads the available updates from
the passive repository (pull) and imports them into the local database,
and then uploads all available updates from the local database to the
passive repository (push).

Both pull and push are each a REST ful HTTP-request, using S3XML as
data format.

SYNCHRONIZATION HOMEPAGE

80

Login as administrator and open the Administration menu. In the left
menu, you will then find the following entries:

Click on Synchronization here to open the homepage of the
Synchronization Module:

CONFIGURATION

Follow this checklist to configure synchronization:

 1. Check the Prerequisites
 2. Make sure the passive site is up and running, and reachable over
the network
 3. Login as administrator at the active site and
 1. Configure the default proxy server in Synchronization Settings
as needed
 2. Register the passive site in Repository Configuration
 3. Configure the resources to synchronize in Resource
Configuration
 4. Set up the Synchronization Schedule
 4. Ensure you have a Worker process running at the active site

Prerequisites

Both sites must have Sahana Eden installed and running. To avoid
problems with different database structures, both Sahana Eden
instances should always use the same version of the software.

Important: It is important that the system clocks in both
sites are synchronized with each other, which can best be
achieved by synchronizing both sites with the same NTP
service.

81

Decide which one is the active and which one is the passive instance.
The passive instance is typically a permanently and publicly accessible
Sahana Eden instance, while the active instance could be a protected
Eden installation (e.g. behind a firewall), or one with only temporary
network access (e.g. on a notebook).

While performing synchronization jobs, the ''active'' site must be able
to establish a connection to the ''passive'' site over the network using
HTTP (or HTTPS).

If a proxy server has to be used for the HTTP connection, this can be
configured in the Synchronization Settings (proxy authentication is
currently not supported).

Check that both instances have the synchronization module enabled in
the private/templates/<templatename>/config.py file.
If the sync section is missing from the settings.modules dict,
then add it as follows:

settings.modules = OrderedDict([
 ...
 # Add or uncomment this section, if it is missing or commented:
 ("sync", Storage(
 name_nice = T("Synchronization"),
 description = T("Synchronization"),
 restricted = True,
 access = "|1|", # Only Administrators can see this
module in the default menu & access the controller
 module_type = 0 # This item is handled separately for
the menu
)),
 ...
])

Synchronization Settings

Go to the Synchronization Homepage and click Settings to open this
page:

This page shows you the UUID (universally unique identifier) of the
repository you are logged in at. You will need this identifier to register
the repository at a peer site. The UUID is created during the first run
of a Sahana Eden instance, and cannot be changed.

If needed, enter the complete URL of the proxy server (including port
number if not 80) that is to be used when connecting to the passive
site (this is only necessary at the active site). Click Save to update the
configuration.

Repository Configuration

82

Go to the Synchronization Homepage and click Repositories. This will
show you a list of all currently configured repositories:

To view and/or modify the configuration for a repository, click the
Open button in the respective row in the list.

By clicking Add Repository, you can register a new repository:

Fill in the fields as follows:

Field Instructions
at the
active
site

at the
passive
site

Name
Enter a name for the repository(for
your own reference)

required required

URL

Enter the URL of the repository
(base URL of the Sahana Eden
instance, e.g.
http://www.example.org/eden)

required

Username
Enter the username to authenticate
at the repository

 required

Password
Enter the password to authenticate
at the repository

 required

Proxy
Server

Enter the URL of a proxy server to
connect to the repository, if
different from the Synchronization

 fill in as
needed

83

Settings

Accept
Pushes

check this if the repository is
allowed to push updates

 set as
needed

UUID
Enter the UUID from the
Synchronization Settings of the
repository

 required required

Resource Configuration

Go to the Synchronization Homepage, click Repositories, then Open
the repository you want to configure a resource for, and change to
the Resources tab:

Fill in the fields as follows:

Field Instructions Example

Resource
Name

Fill in the name of the master table of the resource. Details
can be found in the documentation for the data model of
your Sahana Eden application

req_req

Mode
Select the synchronization mode you wish to activate - pull,
push or both. See Method Overview to understand the
mode

pull and
push

Strategy
Choose the import methods you wish to allow for the
synchronization of this resource

create,
update,
delete

Update
Policy

Choose in which situation records shall be updated, see
explanations below

NEWER

Conflict
Policy

Choose in which situation records shall be updated in case of
conflicts, see explanations below

NEWER

Update Policy

84

If a record has been modified in one of the repositories, then the
synchronization process has to decide whether to update the other
repository with the new data or not. For this decision you can define a
policy:

Policy Meaning

THIS
Always update the remote repository with the local version
of the record (overwrite remote updates)

NEWER
Update both repositories to the newest version of the
record (keep the newer data)

MASTER
Update the record on either side only if the other side has
originated the record (keep the master data)

OTHER
Always update the local repository with the remote version
of the record (overwrite local updates)

Usually, you would choose "NEWER" here unless you have a good
reason to do otherwise.

Conflict Policy

If a record has been modified both in the local repository and the
remote repository since the last synchronization time, then this is
called a conflict situation, in which two concurrent record updates are
available at the same time. You can define a policy for which of the
updates to apply, similar to the Update Policy.

If you do not know what to select here, it is reasonable to choose the
same option as for the Update Policy.

Policy Transfer

In most situations, you would want both repositories to apply the
same policies. This is the default behavior - the policies from the
active site are reported to the passive site during the synchronization,
and are applied there as well (THIS and OTHER are replaced by the
respective opposite at the passive site, of course).

If for some reason you need to define different policies at the passive
site, then you have to configure the same resource at the passive site
as well, and choose the policies explicitly.

Synchronization Schedule

85

Go to the Synchronization Homepage, click Repositories, then Open
the repository configuration you want to schedule a synchronization
job for and change to the Schedule tab. If there are already jobs
configured for this repository, you will see a list of those jobs.
Otherwise (or by clicking Add Job), you get to this form:

With every Job, all resources configured for this repository will be
synchronized.

Fill in the fields as follows:

 Field Instructions Example

 Enabled
 Set to T rue if the job shall actually be run, or
set False to disable the job

 T rue

 Start
T ime

 Select date and time for the first run of this
job (UTC)

 2011-09-21
08:30

 End
T ime

 Select date and time after which the job shall
not be run anymore (UTC)

 2012-09-
21 08:30

 Repeat
n times

 Select how often the job shall be run, set to
0 to set no limit

 0

 Run
every

 Select the time interval after which to repeat
the job

 5 minutes

 T imeout
 Set a maximum time after which to abort
the action

 600
seconds

If you need to switch between jobs (e.g. for maintenance periods, low-
traffic periods), you can set up multiple schedules, and disable/enable
them as needed.

To consider:

86

You should choose meaningful time interval and timeout settings: the
more resources are to be synchronized, the longer it will take (in this
regard, also note that THIS- and OTHER-policies will always exchange
all records in a resource, thus taking significantly longer).

How many records have to be exchanged per run depends on the
average update frequency and the time interval between
synchronizations: e.g. if there are on average 100 record updates per
minute, and you set a 2-minute interval, then there would be 200
records on average to be transmitted every run. The import rate on a
small server has been tested at on average 18 records/second, which
means, the synchronization process would take around 11 seconds in
this case. To be on the safe side, choose a timeout value at least 10
times as high as that - e.g. 120 seconds.

Note that the network traffic arising from synchronization does not
mainly depend on the frequency of synchronization, but on the record
update rate at the sites. Smaller synchronization intervals would
increase the traffic only slightly, but reduce the rate of conflicts and
the risk of network-related problems. However, too small intervals
(below the update rate of the site) may cause unnecessary network
traffic with just empty transmissions.

Worker

The scheduled synchronization jobs are performed by a separate
asynchronous web2py worker process at the active site. Make sure the
worker process for the Scheduler is running at the active site, see
chapter on Scheduler.

SYNCHRONIZATION LOG

87

Go to the Synchronization Homepage and click Log. This shows you
a list of all prior log entries for all repositories.

If you instead want to see the log entries only for a particular
repository, go to the Synchronization Homepage, click Repositories,
then Open the respective repository configuration and go to the Log
tab:

Note: the newest entries are shown on top of the list.

Click on
Details for a log entry to see the complete entry:

Read the entries as follows:

88

Item Explanation

Date/T ime Date and time of the transaction

Repository Name of the repository synchronized with

Resource
Name

Name of the resource synchronized

Mode
Transaction mode (pull or push) and direction of
transmission (incoming or outgoing)

Action Action performed to resolve problems (if any)

Result Result of the transaction

Remote
Error

Was this error at this site or at the repository
synchronized with?

Message The log message

89

26. WEB SERVICES

Web Services in Sahana Eden are implemented as a REST ful API
(Application Programming Interface).

This API allows other applications to access and manipulate Sahana
Eden data resources directly over the web using the HTTP protocol,
which means:

URLs to address resources
HTTP requests to perform actions and transfer data
HTTP method verbs (GET , PUT , POST , DELETE) to specify the
actions to be performed
HTTP status codes to report status and errors

A powerful query language is available to address particular data
elements:

/eden/pr/person?person.first_name__like=Miriam

(all person records where the first name contains "Miriam")

...or to specify method parameters:

/eden/org/office/analyze?
col=location_id&row=type&fact=name&aggregate=group_concat

(a pivot table of offices grouped by facility type vs. location)

The REST ful API uses Sahana Eden's native S3XML format for data
exchange. Other XML or JSON formats are supported using on-the-fly
XSLT transformation - Sahana Eden provides built-in XSLT stylesheets
for a variety of XML standards (e.g. KML, EDXL-HAVE), and can also
accept custom stylesheets.

URL FORMAT

Basic URL Syntax

Example of a URL to address a resource in the Sahana Eden REST ful
API:

http://vita.sahanafoundation.org/eden/hms/hospital/1/bed_capacity/create

The basic URL format is:

(Parts in { } are optional, [A | B] indicates alternatives)

http:// serverserver / pathpath / prefixprefix / namename { /<argumentsarguments > }{ ?<queryquery > }

server (vita.sahanafoundation.org) is the server domain name
path (/eden) the path to the application

prefix (/hms) is the name (prefix) of the Sahana Eden module
name (/hospital) is the resource name

The <arguments> list consists of:

{ /idid }{ / [methodmethod | componentcomponent { /component_idcomponent_id } { /methodmethod }] }
{.formatformat}

90

id (/1) is a record ID in the master table of the resource
component (/bed_capacity) is a component name
component_id is a record ID in the component
method (/create) is a method of the resource
format specifies the requested data format (e.g.: ".xml" for
S3XML)

For the <query> syntax, see the following section.

Basic Query Format

Example of a URL query:

?hospital.name__like=Example%20Hospital

...as part the complete URL:

http://vita.sahanafoundation.org/eden/hms/hospital?
hospital.name__like=Example%20Hospital

The basic query format is:

?resource?resource .{foreign keyforeign key $}fieldfield {operatoroperator}=value(s)value(s)

resource (hospital) is the name of the component, followed by a
period (.)
foreign key is the name of the foreign key field followed by a
dollar sign (to filter against a value in the table referenced by this
foreign key)
field (name) is the name of the field in the target table
operator (__like) is the operator
value(s) (Example%20Hospital) is the value or a comma-
separated list of values to test against (a comma will be treated
as an OR)

Note that special characters in values must be properly URL-encoded (the
%20 in this example stands for a blank).

Supported operators:

Operator Method Comments

__eq equal, = can be omitted

__ne not equal, !=

__lt less than, <
numeric and date/time
types only

__le less than or equal, <=
numeric and date/time
types only

__gt greater than, >
numeric and date/time
types only

__ge greater than or equal, >=
numeric and date/time
types only

__like
wildcard comparison,
LIKE(%value%)

string/text types only

__unlike
negative wildcard comparison,
NOT LIKE(%value%)

string/text types only

__in containment, contains(value) list types only

__ex
negative containment,
excludes(value)

list types only

91

Other Queries

Boundary Box Queries

For resources with location references (e.g. Hospitals), you can use
boundary box queries to select records. The general format of the
query variable is:

?bbox=minLon,minLat,maxLon,maxLat

You can also specify the foreign key field name of the location
reference the query relates to (e.g. in case there are multiple location
references in that resource):

?bbox.FKFieldName=minLon,minLat,maxLon,maxLat

Examples:

/hms/hospital?bbox=123,13.5,124,13.7

/hms/hospital?bbox.location_id=123,13.5,124,13.7

URL Examples

Interactive (HTML) Format

All "person" records in the Person Registry module (pr):

http://localhost:8000/eden/pr/person

Non-interactive Formats

All "person" records in the Person Registry module (pr), in other data
formats:

http://localhost:8000/eden/pr/person.pdf
http://localhost:8000/eden/pr/person.rss
http://localhost:8000/eden/pr/person.xml

Record by ID

http://localhost:8000/eden/pr/person/1
http://localhost:8000/eden/pr/person/1.pfif
http://localhost:8000/eden/pr/person/1.xml

Record by UUID

http://localhost:8000/eden/pr/person?person.uuid= urn:uuid:839bab5a-
a401-4be3-8616-27fbc1810ef4

URL Queries

http://localhost:8000/eden/pr/person?person.id=1,2,3

http://localhost:8000/eden/org/office?
office.type=None,1,2&office.obsolete=False

http://localhost:8000/eden/org/office?
office.modified_on__gt=20110926T10:00:00

Note that in URL queries, date/time values must be in UTC and use the
ISO-8601 combined format YYYMMDDThh:mm:ss.

STANDARD METHODS

Standard methods include:

92

interactive create, read, update and delete (CRUD) including list
views
data export/import in various formats, including on-the-fly
transformation

Note:

in XML and JSON, resources are always exported/imported
including all their components and referenced resources.
in all other formats, the components need to be addressed
separately

GET

Interactive Formats

Interactive formats are HTML (Extension ".html"), or PLAIN (Extension
".plain"). If no format extension is specified, HTML format is assumed.

without method specified in the URL:
if no record ID in the URL: list view of the resource
with a record ID in the URL: read view of the specified
record (if the user is permitted to update the record, an
update form returned instead)

Example: read view of the person record # 1:

http://localhost:8000/eden/pr/person/1

with method specified in the URL:
method create returns a create-form
method read returns a view of the specified record (other
than with blank method, no update form is returned in this
case)
method update returns an update form for the specified
record
method delete returns a delete confirmation form
together with a list of the specified records (if there is
exactly one record identified by its ID in the URL, then the
record will be deleted instead of a form being returned,
see POST)

Example: create form for a new person record:

http://localhost:8000/eden/pr/person/create

some resources support other methods, e.g.
search returns a search form for the resource

Example: search for a person by name or ID:

http://localhost:8000/eden/pr/person/search

Non-interactive formats

Any format extension that is not listed under the interactive formats,
is treated as non-interactive.

without method in the URL:
returns all matching records in the specified format

Example: all person records the user is allowed to read, in
S3XML format:

GET http://localhost:8000/eden/pr/person.xml

93

with method in the URL:
method create or update returns a schema document of
the resource
method create or update together with a source imports
the data into the specified resource (see chapter S3XML)
method options returns a field options document of the
resource
other methods are not supported

Example: get a schema document of the person resource:

GET http://localhost:8000/eden/pr/person/create.xml

XLS and PDF formats work read-only (create/update/delete being
ignored)

POST

Interactive Formats

performs the respective method (if specified in the request)
method create creates a new record
method update updates the specified record
method delete deletes the specified record

expects the form data as multi-part request body

Non-interactive Formats

enters an interactive review of the source data before importing
the data into the resource

PUT

Interactive formats

see POST

Non-interactive formats

import data from the request body (which must be in the
specified format) into the resource
records being matched by the UIDs specified in the data, while
any record IDs in the URL restrict the selection

DELETE

deletes those of the addressed records which are deletable by
the current user

AUTHORIZATION

It is possible to access privileged resources by providing the
username/password within each request, rather than the usual method
of having the login stored within the session.

The REST ful API supports HTTP Basic Authentication
(http://en.wikipedia.org/wiki/Basic_access_authentication).

Note: for some command-line tools like wget or RESTClient you might
need to additionally activate an option for pre-emptive authentication
(unsolicited sending of credentials). E.g. for wget, use the --auth-no-
challenge option.

94

http://en.wikipedia.org/wiki/Basic_access_authentication

AJAX Examples

Here some examples how to add the HTTP Basic Authentication
header to AJAX requests:

function make_base_auth(user, password) {
 var tok = user + ':' + pass;
 var hash = Base64.encode(tok);
 return 'Basic ' + hash;
}

var auth = make_basic_auth('username@example.com', 'password');
var url = 'http://host.domain/eden/controller/function?vars';

// RAW
request = new XMLHttpRequest();
request.setRequestHeader('Authorization', auth);
request.open('PUT', url, true); // async=true
request.send(bodyContent);

// ExtJS
Ext.Ajax.request({
 url : url,
 method : 'GET',
 headers : { Authorization : auth }
});

// jQuery
$.ajax({
 url : url,
 method : 'GET',
 beforeSend : function(req) {
 req.setRequestHeader('Authorization', auth);
 }
});

ERROR HANDLING

The HTTP status code in the response indicates the success or failure
of a request:

Status Code Cause
 Response
Body

 200 OK Success
results or JSON
message

400 BAD
REQUEST

Syntax error or method not
supported for the specified
resource

JSON message

401
UNAUTHORIZED

Authorization required Clear text error

403 FORBIDDEN Insufficient permissions Clear text error

404 NOT
FOUND

Non-existent Resource Clear text error

50x Unrecoverable internal error
T icket issued or
clear text error

Where a JSON message is returned, it has the following structure:

 {
 success= "True" | "False",
 statuscode = "XXX",
 message = "clear text error message",
 tree = {
 /* element tree */
 }
 }

95

If there was an input element tree and it contained any errors, a
subtree with the invalid elements will be added to the JSON message
("tree"). This subtree is expressed in JSON Format. Invalid elements will
have an additional @error attribute containing a clear-text error
desription.

Skipping invalid records at import:

By default, an import request will be rolled back (completely) and an
HTTP 400 BAD REQUEST error be returned if the source contains any
invalid data.

You can override this behavior by using the ignore_errors URL variable
(?ignore_errors=True). Invalid records will then be skipped, while the valid
records will be committed to the database and the request returns a
HTTP 200 OK. The JSON message in the response body would
however contain the error message and the element tree with the
invalid elements.

Note that ignore_errors applies to Validation Errors only. Any other
type of error (e.g. XML syntax error) will be handled as usual (=rollback
+ error message).

The ignore_errors option is meant for "dirty" data, e.g. cases where
you need to import from a source but do not have permission and/or
means to clean it up before import. In all other cases, where possible,
you should avoid ignore_errors and rather sanitize the source.

S3XML ON-THE-FLY TRANSFORMATION

96

http://eden.sahanafoundation.org/wiki/S3XML#JSONFormat1
http://eden.sahanafoundation.org/wiki/S3XRC/S3XML/Transformation?action=edit§ion=1

The Sahana Eden REST ful API can perform XSLT transformation of
XML sources into the S3XML format on-the-fly when exporting or
importing data.

The XSLT stylesheets to use for this transformation can be:

a static file on the server or a web URL
a file attached to the request (at import)
an integrated stylesheet of Eden (folder static/formats)

Note:

You cannot use the .xml or .json extension if the source is to be
transformed. By these extensions, the interface assumes the
source is already S3XML.
Non-XML formats such as PDF or XLS do not support on-the-fly
transformation.

Integrated Transformation Stylesheets

Sahana Eden provides a number of internal XSLT stylesheets for
various formats. These will be automatically used if no other
stylesheet is specified (fallback). The internal stylesheets reside in:

static/formats/<format>/export.xsl to transform S3XML into
another format
static/formats/<format>/import.xsl to transform another format
into S3XML

Example:

static/formats/have/import.xsl transforms EDXL-HAVE (*.have)
into S3XML
static/formats/have/export.xsl transforms S3XML into EDXL-
HAVE

XSLT Stylesheets on the Server

You can use the URL variable transform to specify a transformation
stylesheet at a file system location on the server, e.g.:

http://127.0.0.1:8000/eden/pr/person.pfif?
transform=/home/dominic/stylesheets/pfif.xsl

97

http://eden.sahanafoundation.org/attachment/wiki/S3XRC/S3XML/Transformation/s3xml.png
http://eden.sahanafoundation.org/wiki/S3XRC/S3XML/Transformation?action=edit§ion=3
http://eden.sahanafoundation.org/wiki/S3XRC/S3XML/Transformation?action=edit§ion=4

...or at another location on the web,e.g.:

http://127.0.0.1:8000/eden/pr/person.rss?
transform=http://pub.nursix.org/eden/formats/rss.xsl

If you use transform to specify the stylesheet location explicitly, any
existing internal stylesheet for the format extension would not be
used.

Note:

the Eden web server must be permitted to access the stylesheet
without authentication
the request must not use ".xml" as data format extension,
otherwise no transformation will be performed at all (transform
would be ignored then)

This feature is especially useful to create custom feeds to integrate
into remote sites, e.g. RSS:

create your own rss.xsl to transform S3XML into RSS
place it on a public (e.g. your own) web server, e.g.:

http://www.exam ple.org/eden-access/rss.xsl

provide a feed link to Eden resources using your RSS stylesheet:

http://edensite.org/eden/hm s/hospital.rss?transform =http://www.m ysite.org/eden-
access/rss.xsl

This does work with any XML format, e.g. KML - if you wanted to
provide a map rather than a feed link.

Attached XSLT Stylesheets

For data import, an XSLT stylesheet to transform foreign XML into
S3XML can be attached to the request.

The filename of the attached stylesheet is expected to be
<resourcename>.xsl, where <resourcename> is the name of the target
resource (without module prefix, e.g. person or hospital).

Note:

document(), xsl:include and xsl:import will need absolute paths in
this case (safer to avoid these)

98

27. S3XML

S3XML is a data exchange format for Sahana Eden.

S3XML is a meta-format and does not specify any particular data
elements. The interface is entirely introspective to the underlying data
model, thus the specific constraints defined in the data model also
apply for S3XML documents.

CONVENTIONS

Name Space

In the current implementation of S3XML, no name space identifier shall
be used. Where a name space identifier for the native S3XML format is
needed (e.g. when embedding S3XML in other XML), it shall be:

xmlns:s3xml="http://eden.sahanafoundation.org/wiki/S3XML"

Character Encoding

Generally, XML documents can specify their character encoding in the
XML header:

 <?xml version="1.0" encoding="utf-8"?>

Sources in non-XML formats (JSON, CSV) used with S3XML on-the-fly
conversion/transformation are expected to be UTF-8 encoded.

All exported data are always UTF-8 encoded.

IMPORT SOURCES

There are 3 different ways to specify or submit data sources for
import:

Files on the Server

A source file in the server file system can be specified using the
filename URL variable:

PUT http://<server>/<controller>/<resource>.xml?filename=<path>

Multiple files can be specified as list of comma-separated pathnames:

PUT http://<server>/<controller>/<resource>.xml?filename=<path>,<path>

Remote Files

A source file can be specified by its URL using the fetchurl URL variable:

PUT http://<server>/<controller>/<resource>.xml?fetchurl=<url>

Multiple files can be specified as list of comma-separated pathnames:

PUT http://<server>/<controller>/<resource>.xml?fetchurl=<url>,<url>

Supported protocols are http, ftp and file, where file is interpreted in
the server file system context. URLs of different protocols can be
mixed.

99

The specified URLs must be accessible either without authentication, or
(if you specify credentials in the URLs) they must support unsolicited
HTTP basic authentication - HTTP 403 retries are not handled by the
interface.

The URLs must be properly quoted (see
http://www.w3schools.com/tags/ref_urlencode.asp for more details),
and must not contain commas.

Request Attachments

Source files can also be attached to a multipart-request. In this case
the file extension of the source file must match the request URL file
extension. Multiple files can be attached.

Multiple Sources

Where multiple sources are specified or attached, they are first
converted and transformed one-by-one and then combined into a
single element tree before import.

DUPLICATE RESOLUTION

The S3XML Importer does not handle duplicates within the same
source. As the order of elements in the resulting element tree is not
defined, and the last update time attribute is not mandatory in source
elements, there is no predictable rule of precedence.

Records in the source must not be fractionated, but submitted in one
element. Fractions of records will not be merged by the Importer, and
which of the fractions finally would be imported is not predictable

Source elements using unique keys are automatically matched with
existing records. Where the match is ambiguous (e.g. a set of keys
matching multiple existing records), the import element will be rejected
as invalid. For certain resources, the server may have additional
duplicate finders and resolvers configured. How duplicates are handled
by these resolvers, can differ from resource to resource.

The duplicate resolution strategy in standard import mode is to
update the existing record with the values from the source record. In
synchronization mode the default strategy is to accept/keep the
newest data (the last update time attribute is mandatory in this case).

XML FORMAT

Document Types and Structure

S3XML defines 3 types of documents:

Document Type Description

Schema
Documents

describe the data schema for a resource

Field Option
Documents

describe the currently acceptable options for
fields in a record

Data Documents provide the current contents (data) of resources

Schema Documents

100

http://www.w3schools.com/tags/ref_urlencode.asp

Schema documents describe the data schema for a resource. Clients
can use these documents e.g. for automatic generation of forms.

Schema documents can be retrieved from Sahana Eden by sending an
empty GET request (i.e. without source) to the create.xml method of a
resource, e.g.:

GET http://localhost:8000/eden/pr/person/create.xml

Document T ree:

<s3xml>
 <resource>
 <field>
 ...
 <resource>
 <field>
 ...
 </resource>
 </resource>
</s3xml>

or (if requested from the fields.xml method):

<fields resource="name">
 <field/>
 <field/>
 <field/>
 ...
</fields>

Note:

These documents can only be requested (GET), but not
submitted for import
Schema documents support on-the-fly transformation (see
chapter Web Services)
the URL query parameter ?options=true adds a list of field
options to those fields where options are defined, and combined
with the parameter &reference=true, even options for foreign key
references will be included
the URL query parameter ?meta=true will include the meta fields
(as <meta> elements). In data documents, the meta fields appear
as attributes of the <resource> element

Field Options Documents

Field options documents describe the currently acceptable options
for fields in a record. Clients can use these documents e.g. for
automatic generation and/or client-side validation of forms.

Field options documents can be requested from Sahana Eden by
sending a GET request to the options.xml method of a resource, e.g.:

GET http://localhost:8000/eden/pr/person/options.xml

Document T ree:

<options>
 <select>
 <option>
 <option>
 <option>
 ...
 </select>
 <select>
 ...
 </select>
 ...
</options>

Note:

101

http://eden.sahanafoundation.org/wiki/S3XML?action=edit§ion=22

the field URL variable can be used to specify a particular field in
the resource, the enclosing <options> element would then be
omitted (i.e. <select> becomes root element)
on-the-fly transformation of field options documents is not
supported
Field option documents can only be requested (GET), but not
submitted for import

Data Documents

Data documents provide the current contents (data) of resources.

Data documents can be requested from Sahana Eden by sending a
GET request to the URL of the resource, e.g.:

GET http://localhost:8000/eden/pr/person.xml

Data documents can be submitted to Sahana Eden by sending PUT
requests to the URL of the resource, e.g.:

PUT http://localhost:8000/eden/pr/person.xml

Note that sending data with POST will enter an interactive review of
the source data before importing them, thus POST cannot be used by
merely non-interactive clients.

Document T ree:

<s3xml>
 <resource> <!-- primary resource element -->
 <data> <!-- field data -->
 <data>
 ...
 <resource> <!-- component resource inside the primary resource -->
 <data>
 <data>
 <reference/> <!-- reference -->
 ...
 </resource>
 <reference/> <!-- reference -->
 <reference> <!-- reference with embedded resource element -->
 <resource>
 <data>
 ...
 </resource>
 </reference>
 </resource>
</s3xml>

Components

Components of resources are <resource> elements nested inside the
master <resource> element. Component records will be automatically
imported and the required key references be added (=no explicit
reference-element required).

Foreign key references of component records to their primary record
will not be exported, and where they appear in import sources, they
will be ignored.

Components of components are not allowed (maximum depth 1), and
where they appear in import sources, they will be ignored.

References

Foreign key references (except those linking components to their
primary record) are represented by <reference> elements.

102

http://eden.sahanafoundation.org/wiki/S3XML?action=edit§ion=23

Foreign keys can be importable UIDs (uuid-attribute, which will be both
imported and used to find and/or link to existing records in the DB) or
temporary UIDs (tuid-attribute, which will not be imported but only
used to find records within the current tree), If a <resource> element
with a matching UID key attribute is found in the same tree, it will be
automatically imported.

References inside referenced elements will be resolved (unlimited
depth) and also be imported. Circular references will be detected and
properly resolved.

Multi-references (list:reference type in web2py) use a list of UID keys
separated by vertical dashes like uuid=|uid1|uid2|uid3|. The leading
and trailing vertical dashes must be present.

If a <resource> element is nested inside the <reference>, either or
both of the UID keys can be omitted. Where both keys are however
used, they must match. Multiple embedded <resource> elements are
allowed for multi-references.

Element Descriptions

<s3xml>

This is the root element (in schema and data documents).

<s3xml success="true" results="2" domain="mycomputer"
url="http://127.0.0.1:8000/eden" latmin="-90.0" latmax="90.0" lonmin="-
180.0" lonmax="180.0">
 ...
</s3xml>

Parent elements: none (root element)
Child elements: <resource>
Contents: empty

Attributes:

Name Type Description mandatory?

domain string
the domain name of the
data repository

no

url string
the URL of the data
repository

no

success boolean
true if the page contains
any records, otherwise false

no

results integer
the total number of records
matching the request

no

start integer
the index of the first record
returned (in paginated
requests)

no

limit integer
the maximum number of
records returned (in
paginated requests)

no

latmin,
latmax,
lonmin,
lonmax

float
geo-location boundary box
of the results

no

<resource>

103

This element represents a record (in data documents) or a database
table (in schema documents).

<s3xml>
 <resource name="xxx_yyy">
 ...
 </resource>
</s3xml>

Parent elements: <s3xml>, <resource>, <reference>
Child elements: <resource>, <data>, <field>
Contents: empty

Attributes:

 Name Type Description mandatory?

 name string
 the name of the
database table

 yes

 uuid string
 a unique identifier for
the record

 no*

 tuid string
 a temporary unique
identifier for the record

 no*

 created_on datetime
 date and time when
the record was created

 no**

 modified_on datetime
 date and time when
the record was last
updated

 no, default:
time of the
request** ***

 created_by string
email-address of the
user who created the
record

 no

 modified_by string
email-address of the
user who last updated
the record

 no

 owned_by_user string
email-address of the
user who owns the
record*****

 no

 owned_by_role string
 name of the user
group who collectively
own the record*****

 no

 mci integer master-copy-index
 no, default:
2*** ****

(*) Records will be identified within the input file by their uuid, or,
if no uuid is specified, by their tuid.
(**) as YYYY-MM-DDTHH:mm:ssZ, always UTC
(***) the last update date/time and mci are required in
synchronization
(****) the master copy index specifies how often a record has
been copied across sites, see below
(*****) record ownership will be retained if the record owners can
be matched against existing users/user groups

The uuid will be stored in the database together with the record. If
uuid is present and matches an existing record in the database, then
this record will be updated. If there's no match or no uuid specified in
the resource element, then the importer will create a new record in the
database (and automatically generate a uuid if required).

104

The mci - master-copy-index - indicates how often this record has
been copied across sites:

when importing a new record the mci value is always *imported*
as-is from the source
when updating a record, the mci of the database record remains
unchanged
the mci of a record is *exported* as its current database value +
1.
the repository first creating a record sets mci=0 in the database
record, which appears as mci=1 in the exported XML.
a copying site then imports mci=1 into its database, which
appears as mci=2 in its export XML, and so forth...

The mci can be used to filter records for whether they have been
originated at a repository or not. If there's a fixed set of
synchronization paths between a number of Sahana Eden instances,
the mci can be used for conflict resolution. If the mci is not specified, it
defaults to 2.

MCI handling is optional for non-synchronizing peers.

<data>

This element represents the value of a single field in the record.

<s3xml>
 <resource>
 <data field="fieldname" value="value">...</data>
 </resource>
</s3xml>

Parent elements: resource
Child elements: none (leaf element)
Contents: Text

Attributes:

Name Type Description mandatory?

field string the field name in the record yes

value JSON the native field value no

url URL
the URL to download the contents
from*

no

filename filename
the filename of the attached
contents*

no

(*) If the field is for file upload, a url attribute should be provided to
specify the location of the file. The importer will try to download and
store the file (file transfer) from that URL (pull). It is also possible to
send the file together with the HTTP request - in this case the
filename must be specified instead of the url (push). The push variant
for uploads is meant for peers which do not support pulling for some
reason (e.g. mobile phones). Normal servers would always provide a
URL for download in order to allow the consuming site to decide which
files to download and when (saves bandwidth).

The text node in the data element provides a human-readable
representation of the field value.

105

The value attribute contains a JSON representation of the field value,
retaining the original data type (i.e. strings must be double-quoted)
except for date, time and datetime values, which are to be represented
as simple strings in the respective standard format (no double quotes).
The standard format for datetime values is YYYY-MM-ddTHH:mm:ssZ
(ISO format, UTC), date shall be represented as YYYY-MM-dd, and time
as HH:mm:ss.

data elements representing passwords can contain the clear text
password in the value attribute, or the encrypted password in the text
node. Where a clear text password is given as value attribute, it will be
stored encrypted, otherwise the password will be stored as-is. Note
that clear-text representation of passwords will be accepted by the
interface, but never be exported.

<reference>

Represents a foreign key reference.

<s3xml>
 <resource name="xxx_yyy">
 <reference field="xy" resource="aaabbb"
uuid="urn:uuid:e4bcb9fd-d890-4f2f-b221-1d75fff79e2d"/>
 </resource>
</s3xml>

Parent elements: <resource>
Child elements: <resource>
Contents: Text

Attributes:

 Name Type Description mandatory?

 field string the field name in the record yes

 resource string
 the name of the referenced
database table

 yes

 uuid string
 the unique identifier of the
referenced record (foreign key)*

 (yes)**

 tuid string
 a temporary identifier for a
referenced record (foreign key)*

 (yes)**

(*) Referenced records would always be exported in the same output
file. If a referenced record is found in the same input file, then it will be
automatically imported.

(**) Records will be identified within the input file by their uuid, or, if no
uuid is specified, by their tuid.

If the referenced record is enclosed in the reference element, then uuid
and tuid can be omitted:

<s3xml>
 <resource name="xxxyyy">
 <!-- content of the record goes here -->
 <reference field="xy" resource="aaabbb">
 <resource name="aaabbb">
 <!-- content of the referenced record goes here -->
 </resource>
 </reference>
 </resource>
</s3xml>

106

28. GLOSSARY

Amazon's EC2 - Amazon's Elastic Compute Cloud, a hosted cloud
service

API - Application Programming Interface, an interface which software
programs can use to communicate with each other

CRUD - Create, Read, Update, Delete

Debian - A free and open source community based Linux distribution

GIS - Geographic Information System/Geographic Information Services

Git - A distributed revision control system

GitHub - A free and open source suite of tools that help people and
teams to work together on software projects; code hosting, bug
tracking, mailing lists, etc..

GSoC - Google Summer of Code, a program sponsored by Google
that encourages college students to participate in open source
software projects.

IDE - Integrated Development Environment. An IDE is a software
application that provides comprehensive facilities to computer
programmers for software development. An IDE will normally consist
of a source code editor as well as facilities to access other
development tools such as compiler and/or interpreter, build
automation tools, a debugger etc.

IFRC - International Federation of Red Cross and Red Crescent
Societies

Instance - A single installation of the Sahana Eden software whether it
be on a single server, USB drive or virtual machine.

ISCRAM - Information Systems for Crisis Response and Management

Module - A part of the software that creates functionality in Sahana
Eden.

NGO - Non-Government Organizations

Pootle - An online translation management tool

RAD - Rapid Application Development

Repository - A source for software packages

RESTful - Conforming to the REST constraints, see REST

Representational state transfer (REST) - a style of software
architecture for distributed hypermedia systems, see
http://en.wikipedia.org/wiki/Representational_state_transfer

Resource - Modules define different resources are sets of all database
records which descibe a complex entity in the business process such as
a person or an organization, or a request for items. A module's
controller contains functions which provide an interface to its
resources. See "Resource Model" appendix for a more detailed
explanation.

107

http://en.wikipedia.org/wiki/Representational_state_transfer

Super-Entity - Allows sharing components across multiple resources:
Instead of having several foreign keys for different primary resources,
the shared component contains only one foreign key to the link table,
the so-called super-key. See
http://eden.sahanafoundation.org/wiki/S3XRC/ModelExtensions/SuperEntities

UNDAC - United Nations Disaster Assessment Coordination

UN OCHA- United Nations Office for the Coordination of Humanitarian
Affair

UUID - Universally Unique Identifier

Web2Py - A free and open source web framework for agile
development of secure database-driven web applications; written and
programmable in Python.

108

http://eden.sahanafoundation.org/wiki/S3XRC/ModelExtensions/SuperEntities

29. CREDITS

This book was written during a three-day book sprint held during the
Google Summer of Code Documentation Summit in Mountain View,
California between the 18th and 20th of October 2011 by a team of
Sahana Developers with assistance from book writing experts.

Authors: (from left to right) Pat T ressel, Fran Boon, Shikhar Kohli,
Dominic Koenig, Belinda Lopez, Eli Lev, Michael Howden, Anne
Goldenberg (not present)

Subjects: Disaster Management System

Summary :

Sahana Eden is an open source software platform for Disaster
Management practioners. It allows tracking the needs of the affected
populations and coordinating the responding agencies and their
resources. This book is targeted at decision makers looking for
solutions, users about to deploy the platform and developers who
want to contribute to the project.

Cover Art: Laleh Torabi

Publisher: Lulu.com

Type of Document: collective handbook

Language: English

License: MIT

109

	SAHANA EDEN
	1. ABOUT THIS BOOK
	WHO IS THIS BOOK FOR ?

	2. WHY SHOULD YOU USE SAHANA EDEN?
	BUILT FOR DISASTER MANAGEMENT
	COMMUNITY AND PROFESSIONAL SUPPORT
	HIGHLY CONFIGURABLE AND EASY TO MODIFY

	3. WHAT DOES SAHANA EDEN DO?
	ORGANIZATION REGISTRY
	PROJECT TRACKING
	HUMAN RESOURCES
	INVENTORY
	ASSETS
	ASSESSMENTS
	SCENARIOS & EVENTS
	MAP
	SHELTER MANAGEMENT
	MESSAGING

	4. WHO USES SAHANA EDEN?
	APBV - PORTUGUESE VOLUNTEER FIREFIGHTERS
	DISASTER RISK REDUCTION PROJECT PORTAL
	HAITI 2010 EARTHQUAKE RESPONSE
	INTERNATIONAL FEDERATION OF RED CROSS AND RED CRESCENT SOCIETIES
	HELIOS SUPPLY CHAIN AND INVENTORY SHARING

	5. TECHNICAL OVERVIEW
	SAHANA EDEN FRAMEWORK
	SAHANA EDEN ARCHITECTURE

	6. PLANNING A DEPLOYMENT
	WHO ARE YOUR USERS?
	WHAT SOLUTION IS APPROPRIATE?
	WHAT'S IN A NAME?
	CONFIGURATION VS. CUSTOMIZATION
	WHERE WILL IT BE INSTALLED?
	GOING LIVE!

	7. INSTALLATION
	DIRECTORY STRUCTURE

	8. CONFIGURATION
	CONFIGURATION THROUGH THE WEB INTERFACE
	CONFIGURATION THROUGH TEXT FILES

	9. IMPORTING DATA
	IMPORT FROM SPREADSHEETS

	10. LOCALIZATION
	UPDATING AN EXISTING TRANSLATION
	ADDING A NEW TRANSLATION
	USING POOTLE TO MANAGE TRANSLATIONS

	11. MAINTENANCE
	BACKUPS
	SCRIPTS
	MAINTENANCE SITE
	UPGRADES
	TROUBLESHOOTING UPGRADES

	12. DATA EXPORT
	13. INSTALLING A DEVELOPER ENVIRONMENT
	GITHUB
	RECOMMENDED DEVELOPMENT TOOLS
	VIRTUAL MACHINE

	14. CUSTOMIZATION
	WHY WHITESPACE MATTERS
	DEBUG MODE
	WHICH FILE DO I EDIT?
	TEMPLATES
	HOME PAGE AND OTHER SIMPLE VIEWS
	EDIT A FIELD LABEL
	HIDE A FIELD
	ADD A NEW FIELD
	EDIT THE MENUS

	15. BUILDING A NEW MODULE
	EXAMPLE: TRAINING COURSES
	IDENTIFY THE RESOURCES
	DEFINE THE BASIC DATA MODEL
	ADD A CONTROLLER
	REPORTS
	FIELD TYPES
	FIELD LABELS
	INTERNATIONALIZE FIELD LABELS
	ADD LINKS TO OTHER RESOURCES
	CRUD STRINGS
	MODULE INDEX PAGE
	MENUS
	COMPONENTS
	FURTHER OPTIONS

	16. FURTHER READING
	PYTHON
	WEB2PY
	JAVASCRIPT
	SAHANA EDEN BUILD AND DEBUG TIPS

	17. SAHANA SOFTWARE FOUNDATION
	MEMBERSHIP
	EVENTS

	18. GETTING HELP
	MAILING LIST
	WEB CHAT
	MONTHLY COMMUNITY CALL
	WIKI
	REPORTING BUGS
	PROFESSIONAL SUPPORT

	19. GETTING INVOLVED
	SOFTWARE DEVELOPMENT
	DOCUMENTATION
	TESTING
	BLUEPRINTS
	SYSTEM ADMINISTRATORS
	TRANSLATORS
	DESIGNERS
	GIS EXPERTS

	20. CONTRIBUTING CODE
	USING GITHUB

	21. WHERE TO GO NEXT
	22. RESOURCE MODEL
	Records to Resources

	23. MAPPING & GIS
	MAP VIEWING CLIENT
	MAP SERVICE CATALOG
	SPATIAL INFRASTRUCTURE
	CONFIGURATION
	LOCATION HIERARCHY
	LOCATION SELECTOR
	API
	FUTURE PLANS

	24. SCHEDULER
	25. SYNCHRONIZATION
	OVERVIEW
	SYNCHRONIZATION HOMEPAGE
	CONFIGURATION
	SYNCHRONIZATION LOG

	26. WEB SERVICES
	URL FORMAT
	STANDARD METHODS
	AUTHORIZATION
	ERROR HANDLING
	S3XML ON-THE-FLY TRANSFORMATION

	27. S3XML
	CONVENTIONS
	IMPORT SOURCES
	DUPLICATE RESOLUTION
	XML FORMAT

	28. GLOSSARY
	29. CREDITS

