
A LOOK AT
OPEN VIDEO

1

Published : 2014-08-02
License : None

2

PART ONE
1. A LOOK AT OPEN VIDEO
2. WHAT IS OPEN VIDEO?
3. UNDERSTANDING VIDEO FILES
4. CREATING SUBTITLES
5. UNDERSTANDING CODECS AND
CONTAINERS
6. TOOLS FOR CREATING OPEN VIDEO
FILES
7. ENCODING EXPLAINED

3

1. A LOOK AT OPEN VIDEO

This course is created for the School of Open as part of a 'course
sprint' which took place at the Open Video Forum December 2012 in
Berlin, a project convened by xm:lab and several international partners
to address the needs of African IT developers and film-makers.

As far as we know, there are very few general overviews of the open
video field, and the high level of technical discussion in highly-
specialized fora might keep users and developers interested in the
topic from getting actively involved. This is all the more important as
not all developers are permanently online and free to roam the web
for resources, sifting through hundreds of sites to find what they are
looking for.

We believe strongly in the sharing of knowledges between users and
developers. But we also think that a more comprehensive
understanding of the issues involved in discussions around open video
will create greater awareness of the politics of code: decisions about
how content is encoded is directly related to what you as a user can
do with this content. So seemingly technical issues are directly related
to your freedom to create, share, and use, and we hope that this
course will be of interest to you even if you have little technical
knowledge (or, at this point, interest).

There are many other reasons to get excited about the possibilities of
open video. Don't just take our word for it, check out projects like
Open Video Alliance, FOMS, Mozilla Popcorn and HTML5 Video projects.
Rather than listing all the good things about open video now, we'll
introduce different arguments with examples in each chapter as we
look at all the great tools that are out there.

This course answers a call for resources which can be used to
encourage and facilitate Hackathons, workshops and self-study on
open video technology.

4

http://xmlab.org/symposia/openvideoforum/
http://xmlab.org/events/symposia/symposia-archive/openvideoforum/
http://openvideoconference.org/
http://www.foms-workshop.org
https://mozillalabs.com/en-US/Popcorn/
http://html5video.org/

OVERVIEW OF COURSE CONTENTS

We wanted to start with contents that would be useful to end users of
video technology and then take this knowledge deeper so to be of use
to software developers in this area. To do this we have split the
course into two parts.

Module I - End-User Technologies

We start taking apart video files to see what we find. We then take
this further and start a more detailed take on licensing in chapters
about Codecs and Containers. There are practical sections on creating
open video files in this first section. The first section ends with a
practical look at understanding and creating subtitles in the most open
and accessible way.

Module one aims to be interesting useful to video editors, journalists,
campaigners and anyone using video.

Module II - Open Video for Developers

Part two starts of with some information and examples about using
open video on the web and a general look at online video technologies
before going into an example of how you may move video metadata
between different repositories. There is then a chance to dive into
command line video encoding and manipulation with a gentle lead-in to
that via some video datamoshing. As of the time of writing the section
on video and mobiles is still to be written, maybe you can help out.

Module two has a primary audience as IT students learning about
video and software developers extending their knowledge to work
with video.

5

MORE ABOUT THIS COURSE

During the Open Video Forum forum it was clear the issue of Vendor
lock-in and Freebie Marketing are widespread in the ICT world in Africa.
Prohibitive software licensing costs for video producers and
developers can be avoided by increasing the adoption of open
standards and Free software. However, there is currently very limited
incentive to take up FLOSS solutions in this area of video in African IT
hubs.

Limitations of this course

In this first version of the course we do not cover video editing with
open video tools. This is likely to be may be a part of a revised course
(a first revision course sprint has already been scheduled for April 18-
20, 2013). Keep in kind that his course has been created in a very quick
time frame. If we haven't included particular projects or open video
frameworks and you think that they are important to add then we
would love it if you would help us by contributing to this course. Please
make suggestions in the comments section, the Mokolo video list, or
simply send an email/link to ovf@xmlab.org.

Navigating this course as a student

We also cover a LOT of ground in this
course. It is full of tasters of a wide
variety of subjects and case studies
to do with open video. We aim to
give you pointers to explain exciting
areas of innovation and encourage
you to download and play with
particular tools. Also this is not a
course you have to work though in a
particular order. If you find a chapter
too challenging or not relevant to
you, skip on to the next.

If you complete part one of the course you can apply for your "I
looked at Open Video" badge which is surely worth learning a bit of
nerd gibberish to earn.

TASK: INTRODUCE YOURSELF AND AIMS

In the comments section, introduce yourself to your fellow students.
Share a little about your interests in this area. Why are you interested
in open video?

6

http://en.wikipedia.org/wiki/Vendor_lock-in#Lock-in_for_electronics_and_computers
http://en.wikipedia.org/wiki/Freebie_marketing
http://lists.transmission.cc/mailman/admin/mokolo-video

2. WHAT IS OPEN VIDEO?

This chapter aims to give a very short summary of a working
definition of open video we arrived at as part of the Open Video
Forum and invites you to comment.

By the end of this task you should be able to:

Understand a bit about why people care about open video
Play an 'open video' file

Tools you will need for this task:

Internet Connection
VLC Player - available for Mac, Linux & Windows

OUR WORKING DEFINITION OF OPEN
VIDEO

As we started the course sprint, we had a quick discussion of what
open video meant for us in the context of our projects. The areas we
agreed on were the use of Free Software tools for creating and
distributing video and the adoption of freely-licensed formats, or at
least formats using open standards.

7

http://www.videolan.org/vlc/index.html

To promote open video is it important to make material available in
free and open formats. However, practically you may have to also
provide versions in more restrictive formats like h264 to reach users
on closed platforms like iOS. This is because vendors prevent their
users from using free formats. There are pragmatic reasons
preventing video developers from taking a purist approach to video
distribution.

Whenever possible, it is good to pressure vendors to adopt the use of
free and open formats. We aim to support free and open standards
by the creation of this course and other materials. While h264 may not
we free of restrictions we can use free tools to take it apart, create it
and deepen our knowledge of the subject in general.

RECENT DEBATES ABOUT OPEN VIDEO

There are many blog posts online which outline a tension between
pragmatism and trying to support and promote open video. Many of
these are about the continued use of the patented h264 format
despite attempts to move video distributors towards more open
codecs.

Take a look at of some of these blog posts. Don't get bogged down
by the geek babble details but do get a flavour of the debate. It will
give you a sense of how contested the issue of open standards is, as
commercial interests continue to clash with free software philosophies.

Decoding the HTML 5 video codec debate
Idealism vs pragmatism mozilla debates supporting h264 video
playbac
WebM and broken promises

PATENTLY FREE FORMATS?

An open specification should allow anyone to implement their own
player, encoder or other tools to encode or decode videos in a free
codec. It is important that this can be done without requiring a special
contract or patent agreement. While H264 is a big step forward
compared to proprietary codecs owned by a single vendor like Real or
Microsoft, it still requires anyone implementing an encoder or decoder
and even anyone distributing a video in h264 to pay license fees for
patents covering algorithms used in the format to do so.

For videos distributed on the web for free this has been removed but
if you sell or distribute videos on disks or broadcast you need to pay
up. Free formats like Ogg Theora or WebM dont have such restrictions.
The allow anyone to freely create tools and distribute content as they
like.

For more info you can read this article about The H.264 Licensing
Labyrinth

TASK: PLAY AN OPEN VIDEO FILE
8

http://arstechnica.com/apple/2009/07/decoding-the-html-5-video-codec-debate/
http://arstechnica.com/gadgets/2012/03/idealism-vs-pragmatism-mozilla-debates-supporting-h264-video-playback/
http://googlesystem.blogspot.co.uk/2013/02/webm-and-broken-promises.html
http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-H.264-Licensing-Labyrinth-65403.aspx

TASK: PLAY AN OPEN VIDEO FILE

While licensing and patent issues
have a real impact and these things
do matter, we want this course to
be fun and practical too. When
people argue about these kinds of
esoteric issues it is easy to be
reminded of the 'splitters' featured
in Monty Python's Life of Brian.

As an fun activity download and
play this short clip from the film
provided as a fair use illustration of
the point we are making.

Download WebM video clip

The clip is encoded to the WebM open format, so you will need to use
a video player which supports open video formats to use it. If you are
not sure how to do this then install VLC Player which is available here -
 http://www.videolan.org

FIRST IMPRESSIONS?

What are your first impressions of the world of open video? Do you
think that people should be pragmatic or purist about open video?
Maybe you have questions you want to ask. Please share your
thoughts and questions in the comments.

9

http://objavi.booki.cc/tmp/alookatopenvideo-en-2014.08.02-10.09.37.pdfDcFYes/what-is-open-video/videolan.org
http://en.wikipedia.org/wiki/Fair_use
https://imc.li/hejlq
http://www.videolan.org/

3. UNDERSTANDING VIDEO

FILES
This task aims to give an introductory look at what makes up a video
file. To do this we will download a video file and take a look at what is
inside.

By the end of this task you should be able to:

Understand that video files can have different streams
Use a programme to find out more information about these
streams

Tools you will need for this task:

Internet Connection
Mediainfo - available for Mac, Linux & Windows

STEP ONE: DOWNLOAD A VIDEO FILE

Download a video file in WebM format. If in doubt, you can use the one
listed in the last task. Download WebM video clip

We can play this file on our desktop using an video playing application
like VLC. However, just playing the file doesn't help us to really
understand what is inside it. To find out more we will use another Free
Software programme called Media Info. You can download Mediainfo
from here.

Using MediaInfo to investigate the anatomy of video files

10

http://mediainfo.sourceforge.net/en/Download
https://imc.li/hejlq
http://mediainfo.sourceforge.net/en/Download

When you have installed MediaInfo launch it and you should get an
interface like the one shown below.

Let's open one of our video files by clicking on the Open File icon or
selecting File > Open > Open File(s) from the menu.

When we open the video file MediaInfo reads the file but instead of
playing the video it displays information about it.

11

The General section here gives us the following information

WebM: x.xxMiB, xmn xxs
1 Video Stream: VP8
1 Audio Stream: Ogg Theora

This information will be useful to us later in this course when we start
to work with video files. It is also useful right at the start to
understand the parts video files are made up of.

WebM here describes the video container. Popular video containers
include .mp4, .mov, .avi. Containers themselves don't contain any
video or audio content, they are the vehicle in which that content
travels.

We can see that the WebM container here has one video stream and
one audio stream.

Sometimes we can have files that contain many different video and
audio streams, this can be particularly useful if we have a film with
different audio streams in different languages. We can see this in the
video file listed below.

12

The information of the video above shows us a video file using the
Matroska container (.mkv). This container allows you to add more
than one audio stream.

Codecs and Containers

Each stream that we see here has audio or video information that is
compressed using codecs. We learn much more about codecs and
containers in the following chapters. Right now we just need to
understand that they are used to compress media data so that it
takes up less space.

Popular video codecs include h264, vp8, mpeg2.
Popular audio codecs include ac-2, ogg theora and mp3.

TASK - CRACK OPEN A VIDEO FILE

Take a video file and examine the different parts of it, streams and
metadata using Mediainfo. Post any questions or suggestions in the
comments.

13

4. CREATING SUBTITLES

By the end of this task you should be able to:

Understand different formats subtitles can take
Create subtitles for a video

Tools you will need for this task:

Internet Connection
VLC Player - available for Mac, Linux & Windows

Our next chapter about open video looks at subtitles. Subtitles can
open up your video to new audiences. One of the reasons for
approaching subtitles in an open way is that it allows your community
to get involved in the task of subtitling videos.

Subtitles are textual versions of the dialogue or commentary in films,
television programs, video games, and the like, usually displayed at the
bottom of the screen. They can be a written translation of the video
dialogue in a foreign language or a rendering of the dialogue in the
original language often targeting viewers who are deaf, hard-of-hearing
or have accent recognition problems.

Understanding different kinds of subtitles involves learning a bit of
terminology. Let's get to grips with some of the language used.

DIFFERENT TYPES OF SUBTITLES

Burned-in subtitles (or "hard subs" or "open captions"): These are
subtitles that are built-in to the image and cannot be removed as they
totally become part of the image.

Internal Soft subtitles (Closed Captions): They are hidden within
the video file and not built-in to the image thus can be removed
temporarily, if not required, using the video player menu. You may find
different languages for these soft subtitles (for example up to 8
different languages in the same file!) Those soft subtitles will appear in
the subtitle menu of your player and the viewer can select which ever
suits their needs.

External Soft subtitles (Closed Captions): These are external
individual files: most common are .srt files which contain only 1
language, but you may also find sub + .idx files that may contain many
different languages. Most often, if you want those external subtitles
files to be opened automatically when the video file is opened in a
player, then the subtitles file should have the same name as the movie
file. For example:

 Open_Video_Tutorial.avi <= the movie file
 Open_Video_Tutorial.srt <= the external subtitle file

14

http://www.videolan.org/vlc/index.html

PLAYING VIDEO CAPTIONS ONLINE

Many video sharing systems allow you to play captions and subtitles
on top of your video files. The used of closed captions allow you to
choose different language possibilities rather than having only the
subtitles of only one language burned into your video. Below we can
see a video with English subtitles selected.

The same video shown on the Papuan Voices website has been
translated into many languages. These can be selected in the online
video player.

15

http://www.papuanvoices.net/2012/08/03/love-letter-to-the-soldier.html

The system for displaying and creating subtitles used by the Papuan
Voices website is Amara which is hosted on universalsubtitles.org

We can see that this page allows you to download the video file and
the subtitle files separately. We will do this in our mission to
understand more about how these kinds of subtitles work.

Click on the Download Subtitle link. We will be given the option to open
or save a subtitle file of the type .srt.

If we open up the file that we download we will see that it is really
pretty simple listing times and the text to be displayed over the video.

16

http://universalsubtitles.org

ABOUT SUBRIP FILES (SRT)

SubRip is the most used format for subtitling and it may have the file
format .srt
To create your own SubRip subtitling file, we will need a text editor.
Open your text editor and save your file with a .srt extension. Note
that encoding must be UTF-8 so that special characters can be used

SRT files have been widely adopted. They are a very simple standard
and they do the job well.

Format:
n
h1:m1:s1,d1 --> h2:m2:s2,d2
Some text to display beneath this scene

n = sequential number. This may also appear on the same line as
start/stop times.
h1:m1:s1,d1 = start time of this frame, in hours minutes and seconds to
three decimal places.
h2:m2:s2,d2 = stop time. i.e time when this subtitle text should
disappear from the screen

Extensions : Some subtitles feature html tags inside the SubRip text:

...: bold
<s>...</s>: strikethrough
<u>...</u>: underline
<i>...</i>: italic
: font attributes

17

PLAYING SRT SUBTITLES OFFLINE WITH
VLC PLAYER

Now that we have downloaded our video file and subtitle file we can
also download them on our desktop computer.

To do this, open your video file in VLC player. If you subtitle file is in
the same directory and called a very similar name to your video file, it
may be automatically recognised and played by VLC. If not then you
can select Video >

CREATING SUBTILES ONLINE

At univeralsubtitles.org you can create subtitles online. The process is
quite easy and intuitive, and there are step by step instructions on the
website.

The work area is shown below.

18

http://objavi.booki.cc/tmp/alookatopenvideo-en-2014.08.02-10.09.37.pdfDcFYes/_edit/univeralsubtitles.org

The workflow has 4 stages.

Typing
Synching
Edit T itle and Description
Checking Work

OTHER WAYS OF CREATING SRT FILES

There are many tools on the desktop which we can use to create
these files. This can be handy if we want to subtitle our files off line.

Jubler- Mac, LInux, Windows
Subtitle Workshop - Windows
Gnome subtitles - Linux
The pan.do/ra tool Speedtrans - Mac, Linux, Windows

TASK: CREATING SUBTITLES

Create an SRT file either offline or online using one of the tools
listed in this chapter
Use the Amara system to create a player for your video and
subtitle file.
Post the link to your online video player with subtitles on the
amara website our your own blog / website.

19

http://www.jubler.org/
http://www.softpedia.com/get/Multimedia/Video/Other-VIDEO-Tools/Subtitle-Workshop.shtml
http://gnome-subtitles.sourceforge.net/

5. UNDERSTANDING CODECS

AND CONTAINERS
We think the following overview of nuts and bolts of video files is very
well explained and it really drills down into the details. However if the
level of detail is too much for you, skip ahead to the next task, and
come back to this later. The text is adapted from Mark Pilgrim's work
released under a by-sa-3.0 licence and is online here -
http://diveintohtml5.info/video.html

By the end of this task you should be able to:

Know more about the components of video files and difference
between a container and codec
Understand some issues of openness in regards to video codecs
Have an overview of what formats work well on the web

Tools you will need for this task:

A pen and paper to make notes
Curiosity and a reasonable attention span

OPEN VIDEO AND HTML5

20

http://www.amazon.com/HTML5-Up-Running-Mark-Pilgrim/dp/0596806027
http://diveintohtml5.info/video.html

Anyone who has visited YouTube.com in the past four years knows
that you can embed video in a web page. But prior to the adoption of
HTML5, there was no standards-based way to do this. Virtually all the
video you’ve ever watched “on the web” has been funneled through a
third-party plugin — maybe QuickT ime, maybe RealPlayer, maybe
Flash. (YouTube uses Flash.) These plugins integrate with your browser
well enough that you may not even be aware that you’re using them.
That is, until you try to watch a video on a platform that doesn’t
support that plugin.

HTML5 defines a standard way to embed video in a web page, using a
<video> element. Support for the <video> element is still evolving, which
is a polite way of saying it doesn’t work yet. At least, it doesn’t work
everywhere. But don’t despair! There are alternatives and fallbacks
and options galore.

But support for the <video> element itself is really only a small part of
the story. Before we can talk about HTML5 video, you first need to
understand a little about video itself.

VIDEO CONTAINERS

You may think of video files as “AVI files” or “MP4 files.” In reality,
“AVI” and “MP4” are just container formats. Just like a ZIP file can
contain any sort of file within it, video container formats only define
how to store things within them, not what kinds of data are stored.
(It’s a little more complicated than that, because not all video streams
are compatible with all container formats, but never mind that for
now.)

A video file usually contains multiple tracks — a video track (without
audio), one or more audio tracks (without video) and some containers
even contains one or more subtitletracks or picture tracks. T racks are
usually interrelated. An audio track contains markers within it to help
synchronize the audio with the video. Individual tracks can have
metadata, such as the aspect ratio of a video track, or the language of
an audio track. Containers can also have metadata, such as the title of
the video itself, cover art for the video, episode numbers (for
television shows), and so on.

There are lots of video container formats. Some of the most popular
include

21

MPEG 4, usually with an .mp4 or .m4v extension. The MPEG 4
container is based on Apple’s older QuickT ime container (.mov).
Movie trailers on Apple’s website still use the older QuickT ime
container, but movies that you rent from iTunes are delivered in
an MPEG 4 container.
Flash Video, usually with an .flv extension. Flash Video is,
unsurprisingly, used by Adobe Flash. Prior to Flash 9.0.60.184
(a.k.a. Flash Player 9 Update 3), this was the only container
format that Flash supported. More recent versions of Flash also
support the MPEG 4 container.
Ogg, usually with an .ogv extension. Ogg is an open standard,
open source–friendly, and unencumbered by any known patents.
Firefox 3.5, Chrome 4, and Opera 10.5 support — natively,
without platform-specific plugins — the Ogg container format,
Ogg video (called “Theora”), and Ogg audio (called “Vorbis”). On
the desktop, Ogg is supported out-of-the-box by all major Linux
distributions, and you can use it on Mac and Windows by
installing the QuickT ime components or DirectShow filters,
respectively. It is also playable with the excellent VLC on all
platforms.
WebM is a new container format. It is technically similar to
another format, called Matroska. WebM was announced in May,
2010. It is designed to be used exclusively with the VP8 video
codec and Vorbis audio codec. (More on these in a minute.) It is
supported natively, without platform-specific plugins, in the latest
versions of Chromium, Google Chrome, Mozilla Firefox, and
Opera. Adobe has also announced that a future version of Flash
will support WebM video.
Audio Video Interleave, usually with an .avi extension. The AVI
container format was invented by Microsoft in a simpler time,
when the fact that computers could play video at all was
considered pretty amazing. It does not officially support features
of more recent container formats like embedded metadata. It
does not even officially support most of the modern video and
audio codecs in use today. Over time, companies have tried to
extend it in generally incompatible ways to support this or that,
and it is still the default container format for popular encoders
such as MEncoder.

VIDEO CODECS

When you talk about “watching a video,” you’re probably talking about
a combination of one video stream and one audio stream. But you
don’t have two different files; you just have “the video.” Maybe it’s an
AVI file, or an MP4 file. These are just container formats, like a ZIP file
that contains multiple kinds of files within it. The container format
defines how to store the video and audio streams in a single file.

When you “watch a video,” your video player is doing at least three
things at once:

22

http://en.wikipedia.org/wiki/MPEG-4_Part_14
http://www.chiariglione.org/mpeg/technologies/mp04-ff/index.htm
http://www.apple.com/trailers/
http://en.wikipedia.org/wiki/Flash_Video
http://en.wikipedia.org/wiki/Ogg
http://www.xiph.org/quicktime/
http://www.xiph.org/dshow/
http://www.videolan.org/vlc/
http://www.webmproject.org/
http://en.wikipedia.org/wiki/Matroska
http://en.wikipedia.org/wiki/AVI
http://www.mplayerhq.hu/DOCS/HTML/en/encoding-guide.html
http://diveintohtml5.info/video.html#video-containers

1. Interpreting the container format to find out which video and
audio tracks are available, and how they are stored within the file
so that it can find the data it needs to decode next

2. Decoding the video stream and displaying a series of images on
the screen

3. Decoding the audio stream and sending the sound to your
speakers

A video codec is an algorithm by which a video stream is encoded, i.e. it
specifies how to do #2 above. (The word “codec” is a portmanteau, a
combination of the words “coder” and “decoder.”) Your video player
decodes the video stream according to the video codec, then displays a
series of images, or “frames,” on the screen. Most modern video
codecs use all sorts of tricks to minimize the amount of information
required to display one frame after the next. For example, instead of
storing each individual frame (like a screenshot), they will only store the
differences between frames. Most videos don’t actually change all that
much from one frame to the next, so this allows for high compression
rates, which results in smaller file sizes.

There are lossy and lossless video codecs. Lossless video is much too
big to be useful on the web, so I’ll concentrate on lossy codecs. A lossy
video codec means that information is being irretrievably lost during
encoding. Like copying an audio cassette tape, you’re losing
information about the source video, and degrading the quality, every
time you encode. Instead of the “hiss” of an audio cassette, a re-re-re-
encoded video may look blocky, especially during scenes with a lot of
motion. (Actually, this can happen even if you encode straight from the
original source, if you choose a poor video codec or pass it the wrong
set of parameters.) On the bright side, lossy video codecs can offer
amazing compression rates by smoothing over blockiness during
playback, to make the loss less noticeable to the human eye.

There are tons of video codecs. The three most relevant codecs are
H.264, Theora, and VP8.

H.264

H.264 is also known as “MPEG-4 part 10,” a.k.a. “MPEG-4 AVC,” a.k.a.
“MPEG-4 Advanced Video Coding.” H.264 was also developed by the
MPEG group and standardized in 2003. It aims to provide a single
codec for low-bandwidth, low-CPU devices (cell phones); high-
bandwidth, high-CPU devices (modern desktop computers); and
everything in between. To accomplish this, the H.264 standard is split
into “profiles,” which each define a set of optional features that trade
complexity for file size. Higher profiles use more optional features,
offer better visual quality at smaller file sizes, take longer to encode,
and require more CPU power to decode in real-time.

23

http://en.wikipedia.org/wiki/Portmanteau
http://samples.mplayerhq.hu/V-codecs/
http://diveintohtml5.info/video.html#h264
http://diveintohtml5.info/video.html#theora
http://diveintohtml5.info/video.html#vp8
http://en.wikipedia.org/wiki/H.264
http://en.wikipedia.org/wiki/Moving_Picture_Experts_Group
http://en.wikipedia.org/wiki/H.264#Profiles

To give you a rough idea of the range of profiles, Apple’s iPhone
supports Baseline profile, the AppleTV set-top box supports Baseline
and Main profiles, and Adobe Flash on a desktop PC supports Baseline,
Main, and High profiles. YouTube now uses H.264 to encode high-
definition videos, playable through Adobe Flash; YouTube also provides
H.264-encoded video to mobile devices, including Apple’s iPhone and
phones running Google’s Android mobile operating system. Also, H.264
is one of the video codecs mandated by the Blu-Ray specification; Blu-
Ray discs that use it generally use the High profile.

Most non-PC devices that play H.264 video (including iPhones and
standalone Blu-Ray players) actually do the decoding on a dedicated
chip, since their main CPUs are nowhere near powerful enough to
decode the video in real-time. These days, even low-end desktop
graphics cards support decoding H.264 in hardware. There are
competing H.264 encoders, including the open source x264 library. The
H.264 standard is patent-encumbered; licensing is brokered
through the MPEG LA group. H.264 video can be embedded in most
popular container formats, including MP4 (used primarily by Apple’s
iTunes Store) and MKV (used primarily by non-commercial video
enthusiasts).

Theora

Theora evolved from the VP3 codec and has subsequently been
developed by the Xiph.org Foundation. Theora is a royalty-free
codec and is not encumbered by any known patents other than
the original VP3 patents, which have been licensed royalty-free.
Although the standard has been “frozen” since 2004, the Theora
project (which includes an open source reference encoder and decoder)
only released version 1.0 in November 2008 and version 1.1 in
September 2009.

Theora video can be embedded in any container format, although it is
most often seen in an Ogg container. All major Linux distributions
support Theora out-of-the-box, and Mozilla Firefox 3.5 includes native
support for Theora video in an Ogg container. And by “native”, I mean
“available on all platforms without platform-specific plugins.” You can
also play Theora video on Windows or on Mac OS X after installing
Xiph.org’s open source decoder software.

VP8

VP8 is another video codec from On2, the same company that
originally developed VP3 (later Theora). Technically, it produces output
on par with H.264 High Profile, while maintaining a low decoding
complexity on par with H.264 Baseline.

VP8 is a royalty-free, modern codec and is not encumbered by
any known patents.

AUDIO CODECS

24

http://www.apple.com/iphone/specs.html
http://www.apple.com/appletv/specs.html
http://www.kaourantin.net/2007/08/what-just-happened-to-video-on-web_20.html
http://blog.wired.com/business/2008/12/youtube-adds-hd.html
http://code.google.com/android/
http://compression.ru/video/codec_comparison/mpeg-4_avc_h264_2007_en.html
http://www.videolan.org/developers/x264.html
http://www.mpegla.com/
http://diveintohtml5.info/video.html#video-containers
http://www.apple.com/itunes/whatson/movies.html
http://en.wikipedia.org/wiki/Theora
http://en.wikipedia.org/wiki/Theora#History
http://xiph.org/
http://lists.xiph.org/pipermail/theora-dev/2008-November/003736.html
http://lists.xiph.org/pipermail/theora-dev/2009-September/003985.html
https://developer.mozilla.org/En/Using_audio_and_video_in_Firefox
http://www.xiph.org/dshow/
http://xiph.org/quicktime/
http://en.wikipedia.org/wiki/VP8

Unless you’re going to stick to films made before 1927 or so, you’re
going to want an audio track in your video. Like video codecs, audio
codecs are algorithms by which an audio stream is encoded. Like video
codecs, there are lossy and lossless audio codecs. And like lossless
video, lossless audio is really too big to put on the web. So I’ll
concentrate on lossy audio codecs.

As I mentioned earlier, when you “watch a video,” your computer is
doing at least three things at once:

1. Interpreting the container format
2. Decoding the video stream
3. Decoding the audio stream and sending the sound to your

speakers

The audio codec specifies how to do #3 — decoding the audio stream
and turning it into digital waveforms that your speakers then turn into
sound. As with video codecs, there are all sorts of tricks to minimize
the amount of information stored in the audio stream. And since we’re
talking about lossy audio codecs, information is being lost during the
recording → encoding → decoding → listening lifecycle. Different audio
codecs throw away different things, but they all have the same
purpose: to trick your ears into not noticing the parts that are missing.

One concept that audio has that video does not is channels. We’re
sending sound to your speakers, right? Well, how many speakers do
you have? If you’re sitting at your computer, you may only have two:
one on the left and one on the right. My desktop has three: left, right,
and one more on the floor. So-called “surround sound” systems can
have six or more speakers, strategically placed around the room. Each
speaker is fed a particular channel of the original recording. The theory
is that you can sit in the middle of the six speakers, literally
surrounded by six separate channels of sound, and your brain
synthesizes them and feels like you’re in the middle of the action. Does
it work? A multi-billion-dollar industry seems to think so.

Most general-purpose audio codecs can handle two channels of sound.
During recording, the sound is split into left and right channels; during
encoding, both channels are stored in the same audio stream; during
decoding, both channels are decoded and each is sent to the
appropriate speaker. Some audio codecs can handle more than two
channels, and they keep track of which channel is which and so your
player can send the right sound to the right speaker.

There are lots of audio codecs. Did I say there were lots of video
codecs? Forget that. There are gobs and gobs of audio codecs, but on
the web, there are really only three you need to know about: MP3,
AAC, and Vorbis.

MPEG-1 Audio Layer 3

MPEG-1 Audio Layer 3 is colloquially known as “MP3.”

25

http://www.filmsite.org/jazz.html
http://diveintohtml5.info/video.html#video-codecs
http://diveintohtml5.info/video.html#video-codecs
http://en.wikipedia.org/wiki/Surround_sound
http://wiki.multimedia.cx/index.php?title=
http://en.wikipedia.org/wiki/MPEG-1_Audio_Layer_3

MP3s can contain up to 2 channels of sound. They can be encoded at
different bitrates: 64 kbps, 128 kbps, 192 kbps, and a variety of others
from 32 to 320. Higher bitrates mean larger file sizes and better
quality audio, although the ratio of audio quality to bitrate is not linear.
(128 kbps sounds more than twice as good as 64 kbps, but 256 kbps
doesn’t sound twice as good as 128 kbps.) Furthermore, the MP3
format allows for variable bitrate encoding, which means that some
parts of the encoded stream are compressed more than others. For
example, silence between notes can be encoded at a low bitrate, then
the bitrate can spike up a moment later when multiple instruments
start playing a complex chord. MP3s can also be encoded with a
constant bitrate, which, unsurprisingly, is called constant bitrate encoding.

The MP3 standard doesn’t define exactly how to encode MP3s
(although it does define exactly how to decode them); different
encoders use different psychoacoustic models that produce wildly
different results, but are all decodable by the same players. The open
source LAME project is the best free encoder, and arguably the best
encoder period for all but the lowest bitrates.

The MP3 format (standardized in 1991) is patent-encumbered, which
explains why Linux can’t play MP3 files out of the box. Pretty much
every portable music player supports standalone MP3 files, and MP3
audio streams can be embedded in any video container. Adobe Flash
can play both standalone MP3 files and MP3 audio streams within an
MP4 video container.

Advanced Audio Coding

Advanced Audio Coding is affectionately known as “AAC.”
Standardized in 1997 , it lurched into prominence when Apple chose it
as their default format for the iTunes Store. Originally, all AAC files
“bought” from the iTunes Store were encrypted with Apple’s
proprietary DRM scheme, called FairPlay. Selected songs in the iTunes
Store are now available as unprotected AAC files, which Apple calls
“iTunes Plus” because it sounds so much better than calling everything
else “iTunes Minus.” The AAC format is patent-encumbered;
licensing rates are available online.

AAC was designed to provide better sound quality than MP3 at the
same bitrate, and it can encode audio at any bitrate. (MP3 is limited to
a fixed number of bitrates, with an upper bound of 320 kbps.) AAC
can encode up to 48 channels of sound, although in practice no one
does that. The AAC format also differs from MP3 in defining multiple
profiles, in much the same way as H.264, and for the same reasons.
The “low-complexity” profile is designed to be playable in real-time on
devices with limited CPU power, while higher profiles offer better
sound quality at the same bitrate at the expense of slower encoding
and decoding.

26

http://lame.sourceforge.net/
http://diveintomark.org/archives/2008/12/18/give-part-1-container-formats
http://en.wikipedia.org/wiki/Advanced_Audio_Coding
http://en.wikipedia.org/wiki/FairPlay
http://www.vialicensing.com/licensing/aac-fees.aspx
http://diveintomark.org/archives/2008/12/19/give-part-2-lossy-video-codecs#h264

All current Apple products, including iPods, AppleTV, and QuickT ime
support certain profiles of AAC in standalone audio files and in audio
streams in an MP4 video container. Adobe Flash supports all profiles of
AAC in MP4, as do the open source MPlayer and VLC video players. For
encoding, the FAAC library is the open source option; support for it is
a compile-time option in mencoder and ffmpeg.

Vorbis

Vorbis is often called “Ogg Vorbis,” although this is technically
incorrect. (“Ogg” is just a container format, and Vorbis audio streams
can be embedded in other containers.) Vorbis is not encumbered by
any known patents and is therefore supported out-of-the-box by all
major Linux distributions and by portable devices running the open
source Rockbox firmware. Mozilla Firefox 3.5 supports Vorbis audio
files in an Ogg container, or Ogg videos with a Vorbis audio track.
Android mobile phones can also play standalone Vorbis audio files.
Vorbis audio streams are usually embedded in an Ogg or WebM
container, but they can also be embedded in an MP4 or MKV container
(or, with some hacking, in AVI). Vorbis supports an arbitrary number
of sound channels.

There are open source Vorbis encoders and decoders, including
OggConvert (encoder), ffmpeg (decoder), aoTuV (encoder), and
libvorbis (decoder). There are also QuickT ime components for Mac OS
X and DirectShow filters for Windows.

WHAT WORKS ON THE WEB

If your eyes haven’t glazed over yet, you’re doing better than most. As
you can tell, video (and audio) is a complicated subject — and this was
the abridged version! In case you’re wondering how all of this relates
to HTML5 - well, HTML5 includes a <video> element for embedding
video into a web page. There are no restrictions on the video codec,
audio codec, or container format you can use for your video. One
<video> element can link to multiple video files, and the browser will
choose the first video file it can actually play. It is up to you to know
which browsers support which containers and codecs.

This link takes you to a summary of the landscape of HTML5 video:
http://diveintohtml5.info/video.html#what-works

Professor Markup Says

There is no single combination of containers and
codecs that works in all HTML5 browsers.
This is not likely to change in the near future.
To make your video watchable across all of these
devices and platforms, you’re going to need to
encode your video more than once.

For maximum compatibility, here’s what your video workflow will look
like:

27

http://en.wikipedia.org/wiki/Vorbis
http://diveintohtml5.info/video.html#video-containers
http://www.rockbox.org/
http://code.google.com/android/
http://samples.mplayerhq.hu/MPEG-4/vorbis-in-mp4/
http://en.wikipedia.org/wiki/Matroska
http://www.alexander-noe.com/video/amg/
http://oggconvert.tristanb.net/
http://www.ffmpeg.org/
http://www.geocities.jp/aoyoume/aotuv/
http://downloads.xiph.org/releases/vorbis/
http://www.xiph.org/quicktime/
http://www.xiph.org/dshow/
http://diveintohtml5.info/video.html#what-works

1. Make one version that uses WebM (VP8 + Vorbis).
2. Make another version that uses H.264 baseline video and AAC

“low complexity” audio in an MP4 container.
3. Make another version that uses Theora video and Vorbis audio

in an Ogg container.
4. Link to all three video files from a single <video> element, and fall

back to a Flash-based video player

TASK: GO TO THE PARK!

There is no assessment task for this section. Go to the next task. Or
even better go play in the park, or have a nice cup of tea. You have
earned it. It would be great if you could share your thoughts about
how we could better present this information in the comments.

28

6. TOOLS FOR CREATING OPEN

VIDEO FILES
Now we can get our hands dirty and perhaps unearth some 'digital
artifacts' by doing some video compression using encoding tools. The
text is adapted from Mark Pilgrim's work released under a by-sa-3.0
licence and is online here - http://diveintohtml5.info/video.html

By the end of this task you should be able to:

Convert a video file to another video file with an open container
and / or codec

Tools you will need for this task:

A large source video file
Miro Video Converter - available for Mac & Windows
Or FireFogg - Many platforms (available as a plug in for Firefox)

ENCODING OGG VIDEO WITH FIREFOGG

Firefogg is an open source, GPL-licensed Firefox extension for encoding
Ogg video. To use it, you’ll need to install Mozilla Firefox, then visit
firefogg.org.

For more infomation on how to install Firefogg see
http://diveintohtml5.info/video.html# firefogg

To use click on Make Web Video and follow the simple on screen
instructions.

Select the file on your computer's hard drive to encode.

29

http://en.wikipedia.org/wiki/Digital_artifact
http://www.amazon.com/HTML5-Up-Running-Mark-Pilgrim/dp/0596806027
http://diveintohtml5.info/video.html
http://www.mirovideoconverter.com/
http://firefogg.org/
http://www.getfirefox.com/
http://firefogg.org/
http://diveintohtml5.info/video.html#firefogg

Select either Ogg or WebM video and then select the quality you want
your target file to be.

Click on Encode and choose a location to save your target file.

When the encoding is completed your new video file should ready for
your to test in the location you chose in the previous step.

ENCODING VIDEO WITH MIRO VIDEO
CONVERTER

There are many tools for encoding video, and there are many video
encoding options that affect video quality. If you do not wish to take
the time to understand anything about video encoding, this section is
for you.

30

Miro Video Converter is an open source, GPL-licensed program for
encoding video in multiple formats. Download it for Mac OS X or
Windows. It supports all the output formats mentioned in this chapter.
It offers no options beyond choosing a video file and choosing an
output format. It can take virtually any video file as input, including DV
video produced by consumer-level camcorders. It produces reasonable
quality output from most videos. Due to its lack of options, if you are
unhappy with the output, you have no recourse but to try another
program.

To start, just launch the Miro Video Converter application.

Miro Video Converter main screen

Click “Choose file” and select the source video you want to encode.

“Choose file”

31

http://www.mirovideoconverter.com/

The “Pick a Device or Video Format” dropdown menu lists a variety of
devices and formats. For the purposes of this chapter, we are only
interested in three of them.

1. WebM (vp8) is WebM video (VP8 video and Vorbis audio in a
WebM container).

2. Theora is Theora video and Vorbis audio in an Ogg container.
3. iPhone is H.264 Baseline Profile video and AAC low-complexity

audio in an MP4 container.

Select “WebM” first.

Choosing WebM output

32

http://diveintohtml5.info/video.html#vp8
http://diveintohtml5.info/video.html#vorbis
http://diveintohtml5.info/video.html#theora
http://diveintohtml5.info/video.html#vorbis
http://diveintohtml5.info/video.html#h264
http://diveintohtml5.info/video.html#aac

Click the “Convert” button and Miro Video Converter will immediately
start encoding your video. The output file will be named
SOURCEFILE.webm and will be saved in the same directory as the source
video.

You’ll be staring at this screen
for a long time

33

Once the encoding is complete, you’ll be dumped back to the main
screen. This time, select “Theora” from the Devices and Formats list.

T ime for Theora

That’s it; press the “Convert” button again to encode your Theora
video. The video will be named SOURCEFILE.theora.ogv and will be saved
in the same directory as the source video.

T ime for a cup of coffee

34

Finally, encode your iPhone-compatible H.264 video by selecting
“iPhone” from the Devices and Formats list.

iPhone, not iPhone 4

35

For iPhone-compatible video, Miro Video Converter will give you an
option to send the encoded file to your iTunes library. I have no
opinion on whether you would want to do that, but it’s not necessary
for publishing video on the web.

Don’t send to iTunes

Press the magical “Convert” button and wait. The encoded file will be
named SOURCENAME.iphone.mp4 and will be saved in the same directory
as the source video.

Do some yoga or something

36

You should now have three video files alongside your original source
video.

TASK - ENCODE A VIDEO FILE TO OGG
THEORA OR WEBM

Download a video file from Engagemedia.org or Archive.org.
Re-encode it to an Ogg or WebM video using Firefog.
If your system supports it, install Miro Video Converter and follow the
instructions above to encode to three kinds of files.
Post your questions or results in the comments.

37

7. ENCODING EXPLAINED

This chapter aims to take a humorous and unusual approach to
explain some fundamentals of how video encoding works. We aim to
do this by entering the slightly crazy world of Datamoshing.

By the end of this task you should be able to:

Share the joys of Datamoshing
Understand how I frames and P frames are used for video
compression
Start to alter video encoding parameters using advanced tools

Tools you will need for this task:

Internet Connection
Avidemux - available for Mac, Linux & Windows
ffmpeg - available for Mac, Linux & Windows

ABOUT DATAMOSHING

Datamoshing refers to a particular way of breaking video files so that
they look strange. This is normally done for entertainment in videos
like music videos.

The process of creating a datamosh involves some understanding of
processes in video encoding including i-frames, p-frames and the
concept of motion tracking.

38

http://fixounet.free.fr/avidemux/

Datamoshing step-by-step

The following videos show you how to do datamoshing and gives you
the chance to try hands on manipulation of video files. So here's part
two.

and part three.

39

TIPS ON FINDING SUITABLE CLIPS

You can use openly licensed video or as you are using clips and sharing
for educational use, you can be a more free about the clips you use.

If you are short of time here are two clips for you to use in this
exercise. Download clip one - Download clip two.

USING AVIDEMUX FOR SIMPLE
DATAMOSHING

The how to video is aimed at people using Mac computers. It mentions
two main bits of software. Avidemux and FFmpegX.

Avidemux is available for Mac, Linux and Windows. There is a FLOSS
Manual on it here. It is easy to install. However, FFmpegX is only
available for Mac and it is pretty tricky to install. So we were a bit
worried you may get stuck.

Luckily, we can achieve a datamosh using only Avidemux (part 3 of the
video) as long as we delete all I frames in the clips (apart from the first
one). To do this following these steps.

Open a clip in Avidemux
If needed add another clip using File > Append in Avidemux
Remove parts of the video so you have a short clip which cuts
between suitable scenes with the right kind of motion. T ry out
different ones.
Remove the Iframes from all your video, by manoeuvring to key
frames with the double-arrows, setting in and out points one
frame part and deleting the selected I-frame.
Save to a new video file using the follow settings
Video: Copy
Audio: Copy
Format: Avi

40

http://clearerchannel.org/share/muppets1.avi
http://clearerchannel.org/share/mr_bean.avi
http://fixounet.free.fr/avidemux/
http://en.flossmanuals.net/avidemux/

TIP: You may need to resize clips to be able to combine them in
Avidemux. There is help on how to do that here.

INTRODUCTION TO COMMAND LINE
TOOLS (OPTIONAL)

As you can see from the above example, removing the I frames of a
longer video file using Avidemux would be very time consuming. If we
were going to create a longer example we would want a tool which
removed I frames all at once.

There is a really easy way to achieve this using the command line
application ffmpeg. ffmpeg is easy to install on a on a Linux computer.
The video tutorial mentions FFmpegX which is a front end for ffmpeg.
Unfortunately this tool is for Mac only, and you may find it difficult to
install.

So this seems like a good point in the course to give you the option of
taking the next step in working with open video. This is step is to start
to alter files using a command line application like ffmpeg. Later tasks
in part two of this course take the use of ffmpeg much deeper. This is
a good task to get you started.

To reduce / remove keyframes use the following command as an
example

Code:

 ffmpeg -i inputfile.flv -g 500 -acodec libmp3lame outfile.avi

the -g option specifies keyframes. You will get an error if you set
this too high try this with ffmpeg (999 is still very high but gives no
fatal error). Your outputted files now have very few i-frames. We also
set the audio codec used to be mp3.

After this you will find the process of creating a datamosh in
Avidemux much quicker as there will be almost no I frames in your
source video files.

Installing ffmpeg

Here are Instructions for installing on Windows and a tip for an easy
way to install on Mac and Ubuntu & Debian. If you get stuck we may
not be able to help but put your problem in the comments and we'll
try to steer you in the right direction.

TASK - GET MOSHING
& EARN A BADGE

41

http://en.flossmanuals.net/avidemux/ch008_resizing-video/
http://www.ffmpegx.com/
http://www.wikihow.com/Install-FFmpeg-on-Windows
https://github.com/schaermu/node-fluent-ffmpeg/wiki/Installing-ffmpeg-on-Mac-OS-X
https://ffmpeg.org/trac/ffmpeg/wiki/UbuntuCompilationGuide
http://objavi.booki.cc/tmp/alookatopenvideo-en-2014.08.02-10.09.37.pdfDcFYes/encoding-explained/www.zoharbabin.com/build-and-install-ffmpeg-and-x264-on-debiaan-squeeze-the-dumb-guide

The fun assessment task for this
chapter is to either create a quick
datamosh example and post it to a
video sharing site to share with us in
the comments.

When you have created your mosh
you can apply for your "I looked at
Open Video" badge.

If you get stuck. We are aware that this is quite a hard task. Hey you
do get to earn a badge, after all. If you get stuck post in the
comments and we will try to help you with the specifics of your
problem. This is what peer learning is all about.

42

PART TWO
8. A LOOK AT OPEN VIDEO - PART TWO
9. TAKING VIDEO TO THE WEB
10. VIDEO AND HTML5 MARKUP
11. COLLECTING AND MOVING VIDEO
METADATA
12. USING FFMPEG AND AVCONV
13. WHAT NEXT FOR OPEN VIDEO
14. ABOUT THIS COURSE IN OPEN VIDEO

43

8. A LOOK AT OPEN VIDEO -

PART TWO
The second part of our
course leaves behind some
of the end-user technologies
on open video to take a
deeper look at video
frameworks, command line
approaches, and web
implementations of video. It
aims to be of use to
software developers who are
new to this area.

It also maps some of the key
issues, advantages and
shortcomings of the use of
open video technologies in a developer context.

Navigating this part of the course is not as straightforward as part
one. It is not as directed and the task are more more open ended. You
may want to do a lot of additional reading to really get to the bottom
of the challenges and technologies that we are here only beginning to
explore.

As such we invite you to take an active role in adding to, correcting,
and guiding the contents you see in the following tasks. If you are a
developer or have a role in the documentation of a particular video
framework, tool or approach we invite you to contact us to contribute
a task for course participants.

GOING DEEPER

While we have created a badge for this
part of the course the guidelines for
awarding the badge are flexible. We
feel we can be generous in awarding
this badge as an incentive for
involvement. As such if it will be
awarded for "Making a significant
contribution to (or correction of) 'A
Look at Open Video', or for showing
commitment in demonstrating your
learning outcomes from the course".

So let's go deeper into open video. Come on in - the code is waiting
for you!

44

9. TAKING VIDEO TO THE WEB

There are 4 major ways of experiencing video on the Internet. If you
are interested in new development coming from HTML5 please have a
look at the chapter on Video and HTML5 markup.

1. DOWNLOAD

The simplest form of video on the web is a downloadable file on a
web server. The consumer can only begin playback when the whole file
is downloaded.

Video files on streaming websites can be downloaded as well, even if
you cannot access the whole file at once (e.g. Youtube). You can use
software to do so, either special download software or media players
(i.e. VLC) or a browser plugin. Most of the times downloading these
files will take as long as it would take to watch them at normal
playback speed. The software uses the data stream to generate a
video file.

If you want to offer a video file for download all you really have to do
is store it on your server within a publicly accessible path and link to it
in an HTML website. The user then can right-click on that link and
chose the "download to computer" option in the context menu.

2. PROGRESSIVE DOWNLOAD

[Info from Wikipedia: http://en.wikipedia.org/wiki/Progressive_download
]

45

http://en.wikipedia.org/wiki/Progressive_download

A progressive download is the transfer of digital media files from a
server to a client, typically using the HTTP protocol when initiated
from a computer. You can do this either inside your browser if it is
enabled to display video files or with a video player software (e.g.
VLC).

The consumer may begin playback of the media before the download
is complete. The key difference between streaming media and
progressive download is in how the digital media data is received and
stored by the end user device that is accessing the digital media.

A media player that is capable of progressive download playback relies
on metadata located in the header of the file to be intact and a local
buffer of the digital media file as it is downloaded from a web server.
When a specified amount of data becomes available to the local
playback device, the media will begin to play. This specified amount of
buffer is embedded into the file by the producer of the content in the
encoder settings and is reinforced by additional buffer settings
imposed by the media player.

HTTP Progressive Download versus Streaming Media

The end user experience is similar to streaming media, however the
digital file is downloaded to a physical drive on the end user's device,
the digital file is typically stored in the temp folder of the associated
web browser if the digital media was embedded into a web page or is
diverted to a storage directory that is set in the preferences of the
media player used for playback. The digital media file will stutter or
stop play back if the rate of play back exceeds the rate at which the
file is downloaded. The file will begin to play again after further
download.

3. STREAMING

[Info from Wikipedia: http://en.wikipedia.org/wiki/Streaming_media]

Streaming media is multimedia that is constantly received by and
presented to an end-user while being delivered by a provider.

A client media player can begin playing the data (such as a movie)
before the entire file has been transmitted.

Live streaming , delivering live over the Internet, involves a camera for
the media, an encoder to digitize the content, a media publisher, and a
content delivery network to distribute and deliver the content.

4. ADAPTIVE STREAMING

[info from Wikipedia:
http://en.wikipedia.org/wiki/Adaptive_bitrate_streaming]

46

http://en.wikipedia.org/wiki/Digital_media
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Web_client
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Protocol_(computing)
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/End_user
http://en.wikipedia.org/wiki/Media_player_(application_software)
http://en.wikipedia.org/wiki/Buffer_(telecommunication)
http://en.wikipedia.org/wiki/Encoder
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Multimedia
http://en.wikipedia.org/wiki/End-user_(computer_science)
http://en.wikipedia.org/wiki/Content_delivery_network
http://en.wikipedia.org/wiki/Adaptive_bitrate_streaming

Adaptive bitrate streaming is a technique used in streaming
multimedia over computer networks. While in the past most video
streaming technologies utilized streaming protocols such RTP with
RTSP, today's adaptive streaming technologies are almost exclusively
based on HTTP and designed to work efficiently over large distributed
HTTP networks such as the Internet.

It works by detecting a user's bandwidth and CPU capacity in real time
and adjusting the quality of a video stream accordingly. It requires the
use of an encoder which can encode a single source video at multiple
bit rates. The player client switches between streaming the different
encodings depending on available resources. "The result: very little
buffering, fast start time and a good experience for both high-end and
low-end connections."

More specifically, and as the implementations in use today are,
Adaptive bitrate streaming is method of video streaming over
HTTP where the source content is encoded at multiple bit rates, then
each of the different bit rate streams are segmented into small multi-
second parts. The streaming client is made aware of the available
streams at differing bit rates, and segments of the streams by a
manifest file. When starting the client requests the segments from the
lowest bit rate stream. If the client finds the download speed is
greater than the bit rate of the segment downloaded, then it will
request the next higher bit rate segments. Later, if the client finds the
download speed for a segment is lower than the bit rate for the
segment, and therefore the network throughput has deteriorated, then
it will request a lower bit rate segment. The segment size can vary
depending on the particular implementation, but they are typically
between two (2) and ten (10) seconds.

Current uses

Post-production houses, content delivery networks and studios use
adaptive bit rate technology in order to provide consumers with higher
quality video using less manpower and fewer resources. The creation
of multiple video outputs, particularly for adaptive bit rate streaming,
adds great value to consumers.[3] If the technology is working as
designed, the end user or consumer should be completely unaware of
it. Therefore, even though media companies have been actively using
adaptive bit rate technology for many years now and it has essentially
become a standard practice for high-end streaming providers,
mainstream consumers are relatively ignorant of its necessity.

Benefits of adaptive bit rate streaming

Consumers of streaming media experience the highest quality material
when adaptive bit rate streaming is used because the user's network
and playback conditions are automatically adapted to at any given
time under changing conditions.

47

http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Multimedia
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Real-time_Transport_Protocol
http://en.wikipedia.org/wiki/RTSP
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Video_encoder
http://en.wikipedia.org/wiki/Bit_rate
http://en.wikipedia.org/wiki/Data_buffer
http://en.wikipedia.org/wiki/Post-production
http://en.wikipedia.org/wiki/Content_delivery_network
http://en.wikipedia.org/wiki/Adaptive_bitrate_streaming#cite_note-3

The media and entertainment industry are the main beneficiaries of
adaptive bit rate streaming. As the video space grows exponentially,
content delivery networks and video providers can provide customers
with a superior viewing experience. Adaptive bit rate technology
requires less encoding which simplifies overall workflow and creates
better results.

A CDN is often used to deliver media streaming to an Internet
audience, as it allows scalability. The CDN receives the stream from the
source at its Origin server, then replicates it to many or all of its Edge
cache servers. The end-user requests the stream and is redirected to
the "closest" Edge server. The use of HTTP-based adaptive streaming
allows the Edge server to run a simple HTTP server software, whose
licence cost is cheap or free, reducing software licencing cost,
compared to costly media server licences (e.g. Adobe Flash Media
Streaming Server). The CDN cost for HTTP streaming media is then
similar to HTTP web caching CDN cost.

ASSESSMENT TASK

Show your understanding of the different types listed above by
posting links to examples of the different kinds in your comments or a
blog post.

48

http://en.wikipedia.org/wiki/Video_encoder
http://en.wikipedia.org/wiki/Content_delivery_network

10. VIDEO AND HTML5

MARKUP
Adapted from - http://diveintohtml5.info/video.html#markup

HTML5 gives you two ways to include video on your web page. Both of
them involve the <video> element. If you only have one video file, you
can simply link to it in a src attribute. This is remarkably similar to
including an image with an tag.

One video file

<video src="pr6.webm "></video>

Technically, that’s all you need. But just like an tag, you should
always include width and height attributes in your <video> tags. The
width and height attributes can be the same as the maximum width
and height you specified during the encoding process. Don’t worry if
one dimension of the video is a little smaller than that. Your browser
will center the video inside the box defined by the <video> tag. It won’t
ever be smooshed or stretched out of proportion.

<video src="pr6.webm " width="320" height="240"></video>

By default, the <video> element will not expose any sort of player
controls. You can create your own controls with plain old HTML, CSS,
and JavaScript. The <video> element has methods like play() and
pause() and a read/write property called currentTime. There are also
read/write volume and muted properties. So you really have everything
you need to build your own interface.

49

http://diveintohtml5.info/video.html#markup
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#playing-the-media-resource
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#dom-media-currenttime
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#dom-media-volume
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#dom-media-muted

If you don’t want to build your own interface, you can tell the browser
to display a built-in set of controls. To do this, just include the controls
attribute in your <video> tag.

<video src="pr6.webm " width="320" height="240" controls></video>

There are two other optional attributes I want to mention before we
go any further: preload and autoplay. Don’t shoot the messenger; let
me explain why these are useful. The preload attribute tells the
browser that you would like it to start downloading the video file as
soon as the page loads. This makes sense if the entire point of the
page is to view the video. On the other hand, if it’s just supplementary
material that only a few visitors will watch, then you can set preload to
none to tell the browser to minimize network traffic.

Here’s an example of a video that will start downloading (but not
playing) as soon as the page loads:

<video src="pr6.webm " width="320" height="240" preload></video>

And here’s an example of a video that will not start downloading as
soon as the page loads:

<video src="pr6.webm " width="320" height="240" preload="none"></video>

The autoplay attribute does exactly what it sounds like: it tells the
browser that you would like it to start downloading the video file as
soon as the page loads, and you would like it to start playing the video
automatically as soon as possible. Some people love this; some people
hate it. But let me explain why it’s important to have an attribute like
this in HTML5. Some people are going to want their videos to play
automatically, even if it annoys their visitors. If HTML5 didn’t define a
standard way to auto-play videos, people would resort to JavaScript
hacks to do it anyway. (For example, by calling the video’s play()
method during the window’s load event.) This would be much harder
for visitors to counteract. On the other hand, it’s a simple matter to
add an extension to your browser (or write one, if necessary) to say
“ignore the autoplay attribute, I don’t ever want videos to play
automatically.”

Here’s an example of a video that will start downloading and playing as
soon as possible after the page loads:

<video src="pr6.webm " width="320" height="240" autoplay></video>

And here is a Greasemonkey script that you can install in your local
copy of Firefox that prevents HTML5 video from playing automatically.
It uses the autoplay DOM attribute defined by HTML5, which is the
JavaScript equivalent of the autoplay attribute in your HTML markup.
[disable_video_autoplay.user.js]

// ==UserScript==
// @ nam e Disable video autoplay
// @ nam espace http://diveintom ark.org/projects/greasem onkey/
// @ description Ensures that HTML5 video elem ents do not autoplay
// @ include *
// ==/UserScript==

var arVideos = docum ent.getElem entsByTagNam e('video');
for (var i = arVideos.length - 1; i >= 0; i--) {
 var elm Video = arVideos[i];
 elm Video.autoplay = false;

50

http://www.greasespot.net/
http://diveintohtml5.info/examples/disable_video_autoplay.user.js

}

But wait a second… If you’ve been following along this whole course,
you don’t have just one video file; you have three. One is an .ogv file
that you created with Firefogg or ffmpeg2theora. The second is an
.mp4 file that you created with HandBrake. The third is a .webm file that
you created with Firefogg. HTML5 provides a way to link to all three of
them: the <source> element. Each <video> element can contain more
than one <source> element. Your browser will go down the list of video
sources, in order, and play the first one it’s able to play.

That raises another question: how does the browser know which video
it can play? Well, in the worst case scenario, it loads each of the videos
and tries to play them. That’s a big waste of bandwidth, though. You’ll
save a lot of network traffic if you tell the browser up-front about
each video. You do this with the type attribute on the <source> element.

Here’s the whole thing:

Three (!) video files

<video width="320" height="240" controls>
 <source src="pr6.m p4" type="video/m p4; codecs=avc1.42E01E, m p4a.40.2">
 <source src="pr6.webm " type="video/webm ; codecs=vp8, vorbis">
 <source src="pr6.ogv" type="video/ogg; codecs=theora, vorbis">
</video>

Let’s break that down. The <video> element specifies the width and
height for the video, but it doesn’t actually link to a video file. Inside
the <video> element are three <source> elements. Each <source> element
links to a single video file (with the src attribute), and it also gives
information about the video format (in the type attribute).

The type attribute looks complicated — hell, it is complicated. It’s a
combination of three pieces of information: the container format, the
video codec, and the audio codec. Let’s start from the bottom. For the
.ogv video file, the container format is Ogg, represented here as
video/ogg. (Technically speaking, that’s the MIME type for Ogg video
files.) The video codec is Theora, and the audio codec is Vorbis. That’s
simple enough, except the format of the attribute value is a little
screwy. The value itself has to include quotation marks, which means
you’ll need to use a different kind of quotation mark to surround the
entire value.

 <source src="pr6.ogv" type="video/ogg; codecs=theora, vorbis">

WebM is much the same, but with a different MIME type (video/webm
instead of video/ogg) and a different video codec (vp8 instead of
theora) listed within the codecs parameter.

 <source src="pr6.webm " type="video/webm ; codecs=vp8, vorbis">

The H.264 video is even more complicated. Remember when I said that
both H.264 video and AAC audio can come in different “profiles”? We
encoded with the H.264 “baseline” profile and the AAC “low-
complexity” profile, then wrapped it all in an MPEG-4 container. All of
that information is included in the type attribute.

 <source src="pr6.m p4" type="video/m p4; codecs=avc1.42E01E, m p4a.40.2">

51

http://diveintohtml5.info/video.html#firefogg
http://diveintohtml5.info/video.html#ffmpeg2theora
http://diveintohtml5.info/video.html#handbrake-gui
http://diveintohtml5.info/video.html#firefogg
http://diveintohtml5.info/video.html#video-containers
http://diveintohtml5.info/video.html#video-codecs
http://diveintohtml5.info/video.html#audio-codecs
http://diveintohtml5.info/video.html#h264
http://diveintohtml5.info/video.html#aac

The benefit of going to all this trouble is that the browser will check
the type attribute first to see if it can play a particular video file. If a
browser decides it can’t play a particular video, it won’t download the
file. Not even part of the file. You’ll save on bandwidth, and your
visitors will see the video they came for, faster.

If you follow the instructions in this chapter for encoding your videos,
you can just copy and paste the type attribute values from this
example. Otherwise, you’ll need to work out the type parameters for
yourself.

TASK: CREATE AN HTML PAGE WITH THE
<VIDEO> TAG

Create an HTML page using the HTML5 Video Tag and videos files you
have created
Post a link it to the comments below

52

http://wiki.whatwg.org/wiki/Video_type_parameters

11. COLLECTING AND MOVING

VIDEO METADATA
Video Metadata can
move in mysterious
ways. Here are some
of the ways it can
move and be
collected.

as a part of
the video files
as external files
as part of a
repository
system

Metadata in external files: As we saw in one of the introductory
sections, there are a number of standard metadata fields that can be
included in most video containers. And Matroska files can contain str
files as subtitle streams.

Metadata in external files: Subtitles are often included in .srt files.
This is common with video containers that don't support subtitle
streams or for additional supporting information about video files.
Possibly most commonly seen with avi files in with torrents.

Metadata as part of a repository system: Rather than storting the
metadata in a file it can be in a database of a content management
systems.

Video sharing sites

Archiving sites using Pandora like 0xdb and pad.ma collect metadata
about videos, and also make it available to query based on video
identifier. They aim to have a more complete and flexible approach to
how text and video interact. You can find out more by watching this
Screen cast for Pad.ma

MOVING MEDIA METADATA

There are a great number of ways of moving the metadata from one
repository to another. Sometimes it involves using the site specific API,
sometimes they will make the the data available in an easily machine
readable format. The most common machine formats are: MRSS and
schema.org microdata. Microdata video object is partly read by
Google.

53

http://pan.do/ra
http://0xdb.org/
http://pad.ma/
http://camputer.org/tmp/screencast_webm/screenCast_ffmpeg_1.webm
http://www.schema.org/VideoObject
https://support.google.com/webmasters/bin/answer.py?hl=en&answer=2413309&topic=1088474&ctx=topic

Older and more common is MRSS also embedded in RDFa it is most
commonly part of an RSS feed. Here's a hands on example of Media
RSS as a transporter mechanism for media metadata in use.

CASE STUDY - DRUPAL + FEEDS FOR MRSS

As part of the Open Video Forum, there was a presentation of the
aims of the transmission.cc website. Part of the aim of that website
was to act as an aggregator and searchable archive of video metadata
coming in from various types of RSS, Media RSS (MRSS) feeds. MRSS
adds additional useful infomation to RSS feeds about video and audio
files, including filesize, bitrate, width, heigth etc.

<media:content
 url="http://www.foo.com/movie.mov"
 fileSize="12216320"
 type="video/quicktime"
 medium="video"
 isDefault="true"
 expression="full"
 bitrate="128"
 framerate="25"
 samplingrate="44.1"
 channels="2"
 duration="185"
 height="200"
 width="300"
 lang="en" />

There is more information on the Media RSS specification here -
http://www.rssboard.org/media-rss

Developer/installer overview for transmission aggregator

Transmission used the Drupal content management system as base to
build on and extended the functionality already present in existing
Drupal modules. All the code is standard Drupal and contrib with a
couple of important additions.

The feeds are pulled with the http://drupal.org/project/feeds module.
Feeds makes use of the simplepie parser to interperate the incoming
feeds. Simplepie parses MRSS out of the box but feeds doesn't know
what to do with this data.

54

http://video.search.yahoo.com/mrss
https://support.google.com/webmasters/bin/answer.py?hl=en&answer=162163
http://www.rssboard.org/media-rss

To solve this you can use an extention module to read the MRSS
output coming from the simplepie parser. This module is checked out
as a submodule but is also now in a sandbox on drupal.org
https://drupal.org/sandbox/ekes/1867408

In the transmission.cc site there are two content types for feeds:
'MRSS feed' and 'Video'. Posting a new 'MRSS feed' with the URL of the
RSS feed adds that to the list of feeds that are pulled. Items in the
feed are created as 'Video' nodes.

The node types, and the feeds settings to use them, and to map which
parts of a feed item to which parts of the node can be set up in the
Drupal interface of the feeds module.

This screen shot shows you a 'mapping' of a feed to the content
pieces of your Drupal website.

To make the site itself output MRSS in the RSS feed there is another
module, again included but now also in a sandbox.
https://drupal.org/node/1867416

The complete transmission.cc code can be found at:

"> git://git.iskra.net/drupal/projects/tx

The repository uses git submodules to pull external code.
If you're on the command line to get the rest of the code you then
type (in the git repository you just pulled):

 $ git submodule init
 $ git submodule update

If you're using your favourite gui there should be a way of getting all
the submodules.

55

https://drupal.org/sandbox/ekes/1867408
https://drupal.org/node/1867416
http://git-scm.com/book/th/Git-Tools-Submodules

Replicating the transmission.cc configuration

If you want to replicate the settings for mapping the MRSS feeds, they
are stored in a 'feature' [this is a way of storing settings in Drupal, the
main module is http://drupal.org/project/features].

The relevant feature for this is the one found in
'tx/modules/features/mrss_feeds'

Linking to files instead of pulling them

Transmission.cc pulls the actual files rather than linking to them. If you
want to link to them or embed them externally, you can change the
field mappings (see the image above) to use emfield. Then you need
not worry about the cron and transcoding sections of the tutorial.

Making thumbnails of remote files, ones you have not pulled, is much
more involved than local files. So sometimes you will be missing an
image if there was no thumbnail specified in the MRSS feed. Emfield will
also not embed all formats or sources of video properly, so if this
works will depend on your source video.

Downloading files as part of a cron job

As the transmission.cc configuration maps the files to a filefield they
get downloaded. This is done as part of the queue-cron job (this is
created by the https://drupal.org/project/job_scheduler which is a
requirement of the feeds module.

Important note: if you run cron the standard way, by visiting
http://site/cron.php you are making huge apache php processes. To
avoid this you need at least use Drush to run cron; as well as queue-
cron.

Transcoding with media_mover

Transmission.cc transcodes the downloaded video using ffmpeg into
files that can be easily embedded. The settings for this should be in
the git repository install file. However the version of media_mover
used did not export into features.

The configuration of media_mover in transmission.cc is however not
the best method. Pulling big files, transcoding big files, even using Drush
isn't the optimal solution. Currently the transmission.cc site struggles
and occasionally gets stuck on big files.

The alternative is to use an alternative queue scheduler outside Drupal
(examples include: rabbitmq, beanstalk, and redis with extra scripts).

TASK - SHOW YOUR UNDERSTANDING

56

http://objavi.booki.cc//drupal.org/project/features
http://drupal.org/project/drush

Write a comment outlining a possible use for moving video
metadata (and files) between different repositories.
For extra points write a short outline of the technologies you
would use to do this.

57

12. USING FFMPEG AND

AVCONV
A hands on look at command line encoding. While this chapter was
always going to be challenging to write and we invite you to help us
improve it. We hope we have some good materials here which act as a
base to look at the subject.

ffmpeg and avconv (a more updated version of ffmpeg) are the
command line applications that are working in the back end of many
desktop encoding applications. These include ffmpegX, Handbrake,
SUPER encoder. It is also essential for many desktop video editing
applications including Kdenlive.

These tools can also be a very handy to work with video on Internet
servers. As you will see later in the chapter you will be able to do more
than just transcode video from one file type to another.

Installing ffmpeg / avconv

To start playing around with FFmpeg you will need to install it. It is
best suited to use of a linux based server or desktop but it is possible
on windows and osx. A search engine can help you with the specifics of
how to install it. Search for "install ffmpeg + your operating system"

WebM settings

For an overview of usefull ffmpeg/avconv options related to encoding
WebM
files. http://wiki.webmproject.org/ffmpeg and http://ffmpeg.org/ffmpeg.html# libvpx

58

http://wiki.webmproject.org/ffmpeg
http://ffmpeg.org/ffmpeg.html#libvpx

http://rodrigopolo.com/ffmpeg/cheats.html

H264 settings

For a guide on creating h264 files that work on many mobile devices -
http://h264.code-shop.com/trac/wiki/Encoding. For a general x264
encoding guide see -
http://ffmpeg.org/trac/ffmpeg/wiki/x264EncodingGuide

FFMPEG AND NUMPY

This guide written by RMO is a good introduction to taking your work
with ffmpeg to another level on the server.

In the past year and a half, daf and I have undertaken a series of
media experiments using python's excellent numpy library. The
outcome of these trials are largely encapsulated in our numm project,
which is available in the debian and ubuntu repositories as python-
numm.

Numm uses gstreamer for a/v decoding and encoding, as well as a
minimalist livecoding API, but in the interests of simplicity and
portability, I've been reimplementing some of the core functionality as
a wrapper around the ffmpeg binary.

LOADING A VIDEO AS NUMPY ARRAYS
import numpy as np
import subprocess

def video_frames(path, width=320, height=240, fps=30):
 cmd = ['ffmpeg', '-i', path,
 '-vf', 'scale=%d:%d'%(width,height),
 '-r', str(fps),
 '-an',
 '-c:v', 'rawvideo', '-f', 'rawvideo',
 '-pix_fmt', 'rgb24',
 '-']
 p = subprocess.Popen(cmd, stdout=subprocess.PIPE)
 while True:
 arr = np.fromstring(p.stdout.read(width*height*3),
dtype=np.uint8)
 if len(arr) == 0:
 p.wait()
 return

 yield arr.reshape((height, width, 3))

SAVING FRAMES AS IMAGES

Our video_frames function gives us numpy buffers from a video file.
Each buffer is a 3-d array -- height, width, color -- with 8-bit intensity
values. To save numpy buffers as images, we use the
Python Imaging Library to define a np2image function (from image.py):

import Image
def np2image(np, path):
 im = Image.fromstring(
 'RGB', (np.shape[1], np.shape[0]), np.tostring())
 im.save(path)

59

http://rodrigopolo.com/ffmpeg/cheats.html
http://h264.code-shop.com/trac/wiki/Encoding
http://ffmpeg.org/trac/ffmpeg/wiki/x264EncodingGuide
http://numm.org/~daf
http://python.org
http://scipy.org
http://numm.org/numm/
http://debian.org
http://ubuntu.com
http://gstreamer.org
http://ffmpeg.org
http://effbot.org/zone/pil-index.htm
http://git.numm.org/?p=numm.git;a=blob;f=numm/image.py;h=c410c9083af0b66bbd5c2c2cd5e9ec51c59bff90;hb=HEAD

For example, to save a video as a directory full of still images:

for idx, fr in enumerate(video_to_frames(path)):
 np2image(fr, '%06d.jpg' % (idx))

ENCODING NUMPY ARRAYS TO VIDEO

Alternatively, we can write a series of frames back to disk as a video:

def frames_to_video(generator, path, fps=30, ffopts=[]):
 p = None
 for fr in generator:
 if p is None:
 cmd =['ffmpeg', '-y', '-s', '%dx%d' % (fr.shape[1],
fr.shape[0]),
 '-r', str(fps),
 '-an',
 '-c:v', 'rawvideo', '-f', 'rawvideo',
 '-pix_fmt', 'rgb24',
 '-i', '-'] + ffopts + [path]
 p = subprocess.Popen(cmd, stdin=subprocess.PIPE)
 p.stdin.write(fr.tostring())
 p.stdin.close()
 p.wait()

A SIMPLE TEST

Assuming you've saved these functions to a file (see here) and
imported them, we can re-encode a video:

frames_to_video(
 video_to_frames('/path/to/input/video.avi'),
 '/path/to/output/video.webm')

And ffmpeg encoding parameters can be added as needed, though this
is not an efficient or in any way recommended method to transcode
videos.

frames_to_video(
 video_to_frames('/path/to/input/video.avi'),
 '/path/to/output/video.webm', ffopts=['-vb', '500K']) # &c.

VIDEO SYNOPSES

Here are a few quick examples of the processing you can do by
thinking about video as a series of arrays.

composite image

The average frame in a video:

INPUT_VIDEO = '/path/to/video'
W, H = (320, 240)

comp = np.zeros((H, W, 3), dtype=int)
nframes = 0
for fr in video_frames(INPUT_VIDEO, width=W, height=H):
 comp += fr
 nframes += 1
comp = (comp / nframes).astype(np.uint8)
np2image(comp, INPUT_VIDEO + '-comp.png')

scans

60

http://git.numm.org/?p=numm.git;a=blob;f=numm/video.py;h=e1a17d17d10d14307665bf509d02dd614851d3cb;hb=refs/heads/numm2

Slitscans and
0xScans are pixel-wide sweeps through a video:

slits = []
oxscan = []
for fr in video_frames(INPUT_VIDEO, width=W, height=H):
 slits.append(fr[:,W/2])
 oxscan.append(fr.mean(axis=1).astype(np.uint8))
slits = np.array(slits).transpose(1,0,2)
oxscan = np.array(oxscan).transpose(1,0,2)
np2image(slits, INPUT_VIDEO + '-slitscan.png')
np2image(oxscan, INPUT_VIDEO + '-oxscan.png')

TASK- DO SOMETHING WITH FFMPEG /
AVCONV

Do something freaky (or normal for that matter) with ffmpeg / avconv
and paste in the command line input you used as a comment or blog
post.

61

http://www.flong.com/texts/lists/slit_scan/
https://pan.do/ra#tour.17

13. WHAT NEXT FOR OPEN

VIDEO
There were some fantastic debates and lines of thinking at the Open
Video Forum on this subject. However, we were not able to spend the
time needed to finish this chapter. Some of the ideas generated
included the following bullet points.

Open video and hybrid distribution
Last mile issues and open video
Open hardware - how much autonomy do we want?
Using SD card distribution
Video editing using Free Software
Film post-production using Free Software tools
Smart phone / feature phones in Africa and the next 5 years
Challenges of implementing open video solutions on mobile
devices

TASK - HELP US ADD
TO THIS COURSE

Write a blog post or comment on this course. What worked well? What
can be improved? What is missing? What are the aspects that excite
you about open video? We will try to include your interests in the next
version of this course.

You have made it. Please claim your "Deeper into Open Video"
badge. Be sure to put a link to one of the tasks where you have
demonstrated your learning.

62

14. ABOUT THIS COURSE IN

OPEN VIDEO
The Open Video Forum aimed to bring together participants interested
in open video in the context of a project called Mokolo Video being
developed by the Mokolo Labs team. There is a project archive here -
ovf.xmlab.org.

(en) For Mokolo.Labs, the development challenge for
innovative video distribution is not low-bandwith, but
bandwidth diversity and resource efficiency. A generalized
user experience can only be achieved when reliable
bandwidth data is available to developers. Often network
carriers market their connection plans with “max bandwidth
xyz”. We aim to assist developers through the creation of
an African Video Bandwidth Observatory and invite
partnerships with the MolokoLabs project in this effort.

Areas of interest: social viewing experience; crowd-sourced
metadata & content curation; progressive download &
adaptive bitrate streaming; test frameworks & user
feedback strategies; accessible open source solutions for
African video producers; low-cost server side solutions for
video distribution; semantic search based on increased
availability of metadata; connection of audiovisual work
with cultural metadata.

The course sprint is a step towards the creation of a Open Video
Handbook which we aim to create to address some of the needs
addressed by the project.

The course aimed to introduce the subject of Open Video to quite a
wide range of students. Where possible there is an assessment task so
that you can test and demonstrate your learning as you work through
the course.

The course sprint is a step towards the creation of a Open Video
Handbook which we aim to create to address some of the needs
addressed by the Moloko Lab project by xm:lab, the conveners of this
'course sprint'. There is a project archive here – ovf.xmlab.org.

ABOUT THE PROCESS OF THIS COURSE
SPRINT

This course was created as part of the Open Video Forum event. It
took place on the Saturday 15th and Sunday 16th of December 2012.
Many thanks to the people involved and to Soenke Zehele for pulling
together the sprint and the Creative Commons School of Open for
encouragement.

63

http://ovf.xmlab.org
http://xmlab.org/
http://ovf.xmlab.org

Emeka Okoye (Vikantti Software, Next2Us), Vincent Lagoeyte (vil-
laACT), Quirin Pils (Pixelchiefs, mokolo.labs), Jan T retschok (xm:l ab,
mokolo.labs), Fua Tse (activspaces, mokolo.labs), Kester Edwards
(transmission.cc), Mick Fuzz (FLOSSmanuals, V4C), Jan Gerber (Pad.Ma),
Henrike Grohs (Goethe Institut Johannesburg), RMO (numm.org)

The process of starting the sprint was lead by Mick Fuzz from FLOSS
Manuals. There are some comments from him below on the process.

I wanted to try and experiment of using some of the
elements of the BookSprint process. BookSprint create
full books in 3-5 days with 6-10 participants in a very
intensive process. It was not the aim fully replicate this for
this event. However, while the outcome, commitment levels
and timescale were different but the planning and
structuring activities were similar. The process of agreeing
the scope, subject matter, chapter structure and allocating
the chapters to writers was accelerated into a 2 hour
process on the first day of the course sprint and we
started writing after lunch.

After that process was completed, it's all easy going. We
write individually but as we share the same space,
discussions, suggestions, feedback and revisions happen
naturally. As a facilitator, I know that the expertise in the
room all I have to do is to encourage that interaction
happen.

One of the observation by Jan Gerber who came in later on the first
day was that the structure of the contents had a lot of similarity with
Dive in to HTML5 video section. This guide which embraced the
possibilities of HTML5 to use open video. He also pointed out that the
licence was compatible and could be used directly in the coures. This
plugged a couple of chapters that were tricky to write and speeded up
the process nicely.

There were also some placeholder chapters as the participants that
suggested them were unable to complete them as they had to travel
away from the course sprint and wanted to continue them later. These
include What Next for Open Video and the section on Open Video and
Mobiles, so watch this space.

Many thanks to Jane Park for her constructive comments on the
course. These have been integrated into the first version in time for
the launch of the School of Open.

64

http://www.next2.us/
http://www.act-dakar.net/
http://www.pixelchiefs.de/
http://activspaces.com/
http://www.transmission.cc/
http://www.flossmanuals.net/
https://www.v4c.org/
http://pad.ma/
http://www.goethe.de/johannesburg
http://numm.org
http://www.booksprints.net/

	A LOOK AT OPEN VIDEO
	1. A LOOK AT OPEN VIDEO
	OVERVIEW OF COURSE CONTENTS
	MORE ABOUT THIS COURSE
	TASK: INTRODUCE YOURSELF AND AIMS

	2. WHAT IS OPEN VIDEO?
	OUR WORKING DEFINITION OF OPEN VIDEO
	RECENT DEBATES ABOUT OPEN VIDEO
	PATENTLY FREE FORMATS?
	TASK: PLAY AN OPEN VIDEO FILE
	FIRST IMPRESSIONS?

	3. UNDERSTANDING VIDEO FILES
	STEP ONE: DOWNLOAD A VIDEO FILE
	TASK - CRACK OPEN A VIDEO FILE

	4. CREATING SUBTITLES
	DIFFERENT TYPES OF SUBTITLES
	PLAYING VIDEO CAPTIONS ONLINE
	ABOUT SUBRIP FILES (SRT)
	PLAYING SRT SUBTITLES OFFLINE WITH VLC PLAYER
	CREATING SUBTILES ONLINE
	OTHER WAYS OF CREATING SRT FILES
	TASK: CREATING SUBTITLES

	5. UNDERSTANDING CODECS AND CONTAINERS
	OPEN VIDEO AND HTML5
	VIDEO CONTAINERS
	VIDEO CODECS
	AUDIO CODECS
	WHAT WORKS ON THE WEB
	TASK: GO TO THE PARK!

	6. TOOLS FOR CREATING OPEN VIDEO FILES
	ENCODING OGG VIDEO WITH FIREFOGG
	ENCODING VIDEO WITH MIRO VIDEO CONVERTER
	TASK - ENCODE A VIDEO FILE TO OGG THEORA OR WEBM

	7. ENCODING EXPLAINED
	ABOUT DATAMOSHING
	TIPS ON FINDING SUITABLE CLIPS
	USING AVIDEMUX FOR SIMPLE DATAMOSHING
	INTRODUCTION TO COMMAND LINE TOOLS (OPTIONAL)
	TASK - GET MOSHING & EARN A BADGE

	8. A LOOK AT OPEN VIDEO - PART TWO
	GOING DEEPER

	9. TAKING VIDEO TO THE WEB
	1. DOWNLOAD
	2. PROGRESSIVE DOWNLOAD
	3. STREAMING
	4. ADAPTIVE STREAMING
	ASSESSMENT TASK

	10. VIDEO AND HTML5 MARKUP
	TASK: CREATE AN HTML PAGE WITH THE <VIDEO> TAG

	11. COLLECTING AND MOVING VIDEO METADATA
	MOVING MEDIA METADATA
	CASE STUDY - DRUPAL + FEEDS FOR MRSS
	TASK - SHOW YOUR UNDERSTANDING

	12. USING FFMPEG AND AVCONV
	Installing ffmpeg / avconv
	WebM settings
	H264 settings
	FFMPEG AND NUMPY
	LOADING A VIDEO AS NUMPY ARRAYS
	SAVING FRAMES AS IMAGES
	ENCODING NUMPY ARRAYS TO VIDEO
	A SIMPLE TEST
	VIDEO SYNOPSES
	TASK- DO SOMETHING WITH FFMPEG / AVCONV

	13. WHAT NEXT FOR OPEN VIDEO
	TASK - HELP US ADD TO THIS COURSE

	14. ABOUT THIS COURSE IN OPEN VIDEO
	ABOUT THE PROCESS OF THIS COURSE SPRINT

