
INTRODUCTION
TO
MALLARD

1

Published : 2013-10-24
License : None

2

INTRODUCTION
1. WHY MALLARD?
2. ABOUT THIS BOOK
3. ABOUT MALLARD
4. PRE-REQUISITES
5. COMPARING MALLARD TO OTHER
TOOLS
6. PROJECTS THAT USE MALLARD

3

1. WHY MALLARD?

Software that does not help its users is software that will lose its
users. Whether you are a dedicated documentation writer or a Linux
software developer who needs to write documentation, you will
appreciate Mallard's elegant approach to the important task of
creating good documentation that will help users just enough, just when
they need help.

The Mallard language is an easy way to build topic-oriented, context-
sensitive help right into your Linux software and then generate HTML
pages from that same help documentation that can easily be put on
the web. Mallard features a unique "back-linking" system: instead of
putting links to all help topics in an overarching index page,
documentation authors can add "back-links" to index pages (called
"guides") directly within new help topic pages. Because of this
reciprocal linking mechanism, new help topics are always neatly
integrated with existing help topics. Mallard, unlike many other
documentation systems, is easy, extensible, and topic-oriented.

4

2. ABOUT THIS BOOK

This book is a basic introduction to key Mallard concepts that is
intended for user documentation writers, who may or may not also be
software developers. When you finish this book, you will be able to
build a fully-linked Mallard document and integrate it with your Linux
application or transform it to HTML.

To use this book, you should have some familiarity with the following:

markup languages such as HTML and XML,
the command line, and
a Linux operating system.

It would also help (but is not essential) to be acquainted with the
GNOME desktop environment for Linux.

This book is not:

a comprehensive reference for Mallard vocabulary,
a detailed technical specification of the Mallard language,
a guide to the GNOME desktop environment for Linux,
a guide to better technical writing.

This book is designed to be small and accessible, and there are other
references for each the above topics, many of which can be found in
the Appendix on further resources.

You can help make this book better by suggesting revisions or
reporting errors on the Mallard mailing list. See
http://projectmallard.org/about/contact to join the list.

5

http://projectmallard.org/about/contact

3. ABOUT MALLARD

What Mallard is

Mallard is a markup language used to write topic-oriented
documentation that can easily be integrated into a Linux application.
You can write and edit Mallard documents with a text editor, but raw
Mallard documents can only be displayed instantaneously in Yelp, the
GNOME help viewer. However, Mallard documents can be manually
transformed to HTML, XHTML and ePUB using Yelp developer tools.

Mallard uses the topic as the basic building block of a help document
instead of imposing a top-down order from a table of contents. This
focus on topics allows many contributors to help with documenting
their modules for users without needing to understand the entire
documentation structure. Using Mallard also makes your
documentation highly extensible. When an application is updated, new
topic pages can be added without changing the structure of the
existing documentation. This also allows plugin help to be dropped into
place when a plugin is installed.

Topic-oriented documentation is inherently modular, so topics can be
re-used in different documents. Each topic is independent and requires
little to no background information to write. To make the
documentation cohesive, stand-alone topic pages can be associated
with background information that a user may want to understand, with
a sub-topic, or with further topics that may interest them.

What Mallard is not

Mallard is not designed for reference documentation, and it is not the
best tool for writing a novel. It is custom-designed for making topic-
based user help attached to GUI software and currently has tools that
have been tested and work well under Linux platforms.

Mallard is also not a layout tool for making printed or print-like
manuals or books. Although the HTML it produces is clean and
effective, Mallard does not handle large amounts of conceptual data
well.

6

4. PRE-REQUISITES

Tools

You will need the following tools to write effectively in Mallard and
integrate the results into your software:

A text editor, ideally with XML syntax highlighting,
A Linux system,
Yelp, a viewer for Mallard documents, which is included in the
GNOME desktop environment available at http://gnome.org or
which can be downloaded separately at
https://projects.gnome.org/yelp/download.

Skills

The following skills will help you write documentation in Mallard. You do
not need to be an expert at any of these, but you should have basic
understanding of these concepts.

Familiarity with markup languages, such as HTML and XML. The
organization and presentation of HTML content is determined by
tags around the text, such as using <p> to identify a paragraph
of text. You should know and understand the terms element, tag,
and attribute.
Knowledge of basic command line operation. You should
understand what the command line is and be willing to enter
commands in it.

7

http://gnome.org
https://projects.gnome.org/yelp/download

5. COMPARING MALLARD TO

OTHER TOOLS
There is no perfect tool for everything. Selecting a tool mindfully is a
process of understanding your needs and strengths and choosing one
that supports your goals. Although it can be used to do other things,
Mallard is specifically designed for writing structured, topic-oriented
user help.

This table will help you compare Mallard's features with other
documentation tools available for Linux systems.

Mallard Feature Comparison

 Mallard DocBook reStructuredText LateX Lout

Build
system
integration

yes
(autotools)

no yes no no

HTML
output

yes yes yes
yes
(latex2html)

no

PDF
output

no yes (fop) yes (rst2pdf) yes
yes
(experimental)

XML
output

yes yes yes
yes
(LaTeXML)

no

Automatic
back-
linking

yes no no no no

Page
status
tracking

yes yes no no no

Auto-
updating

yes
(in Yelp)

no no no no

8

6. PROJECTS THAT USE

MALLARD
A number of projects use Mallard. As Mallard gains users, we hope to
add more projects to this page. If you have a project written with
Mallard, please notify the Mallard mailing list. You can join the Mallard
list at http://projectmallard.org/about/contact.

GNOME

The documentation for the GNOME desktop is written in Mallard and
displayed in Yelp. See GNOME user
help at https://help.gnome.org/users/gnome‑help/stable/ for an
example of the static help. GNOME applications such as Web, Eye of
GNOME, Evince and others are documented in Mallard.

Ubuntu

Ubuntu also uses Mallard for documentation. Clicking a help link in
Ubuntu brings up contextual help generated with Mallard, and the
HTML documentation is created from the same Mallard source. See the
Ubuntu HTML documentation at
https://help.ubuntu.com/13.04/ubuntu‑help/index.html.

Shotwell

Shotwell is a photograph organization application that uses Mallard to
generate its contextual help and user guide. See Shotwell user help at
http://www.yorba.org/shotwell/help/ for an example.

9

http://projectmallard.org/about/contact
https://help.gnome.org/users/gnome-help/stable/
https://help.ubuntu.com/13.04/ubuntu-help/index.html
http://www.yorba.org/shotwell/help/

CORE MALLARD
7. MALLARD IN ACTION
8. BASIC CONCEPTS
9. GUIDE PAGES
10. TOPIC PAGES
11. BASIC TUTORIAL

10

7. MALLARD IN ACTION

Here is a basic example of Mallard in action. Provided below is the raw
Mallard markup for a topic page on planting beans and a screenshot of
what that page looks like when displayed with Yelp on a Linux system.

Topic page XML

<page xmlns="http://projectmallard.org/1.0/"
 type="topic"
 id="planting">

 <title>Planting Beans</title>

 <p>By the end of this page, you will be able to plant your magic
 beans and nurture them into a bean sprout.</p>

 <steps>
 <item>
 <p>Dig a hole 5cm deep.</p>
 </item>
 <item>
 <p>Place your magic beans in the hole.</p>
 </item>
 <item>
 <p>Fill the hole with clean dirt and pat it level.</p>
 </item>
 <item>
 <p>Water daily.</p>
 </item>
 </steps>

</page>

Topic page in Yelp help viewer

11

12

8. BASIC CONCEPTS

A Mallard help document is composed of several independent pages.
Each page is kept in a separate XML file with the file extension .page, or
.page.stub for draft files which are not ready to be included in the
released documentation.

These pages can be one of two possible types: a guide page or a topic
page. The type of page is specified using the type attribute,
either type="guide" or type="topic". Every Mallard document requires a
front page to serve as an overarching index: this front index page
must be a guide page whose filename is index.page.

All pages require a unique ID. For ease of use, the ID should match the
page name. For example, planting.page would have the id="planting"
attribute on the page. The IDs are used primarily for linking one page
to another. You can link two pages to each other or include links to
topic pages from a guide page, but you should usually link from inside
a topic page.

By default, Mallard will order all topic pages alphabetically on the index
page. Guide pages can be nested within other guide pages to create
organization on the index page.

13

9. GUIDE PAGES

Guide pages are navigational guides to topic pages. They are like
indexes in books. There is very little actual content on a guide page,
since it is merely a container for links to topic pages. A guide page is
usually separated into topic-based sections and unordered links that
may lead to a topic page or a sub-guide page. Each guide page should
be specified with the type="guide" attribute and should (like all pages)
be assigned a unique identifier in the id="" attribute that ideally
matches the filename of the page. Guide pages list all topic pages in a
smaller project or other guide pages and topics in larger projects.

A guide page is the starting point for the reader. It lists all topic pages
in a smaller project or other guide pages and topics in larger projects.

Every project must have a special guide page named index.page to
generate HTML documentation and to allow the Mallard document to
be integrated into your application:

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <title>Beanstalk Help</title>

</page>

Unlike other web or book indexes, Mallard guide pages are always up-
to-date. Mallard guide pages normally do not themselves list all
relevant topic pages. Instead, Mallard guide pages are informed of
relevant topic pages or sub-guide pages by links placed directly in the
topic or sub-guide page. This means that there is usually no need to
revise a guide page. It also means that if a topic page has yet to be
written, the guide page will contain no link rather than a broken link.

You can use several sub-guide pages, that act as landing pages, to help
keep the index.page well organized. This is especially useful if you are
working with many topic pages.

14

10. TOPIC PAGES

Topic pages contain actual help content that will address tasks the
user is trying to finish and problems the user is likely to encounter.
Each topic page should contain only one task, concept or reference
item. Topic pages should be the absolute smallest amount of
information required to accomplish something. Each topic page should
be specified with the type="topic" attribute and should (like all pages)
be assigned a unique identifier in the id="" attribute that ideally
matches the filename of the page.

A topic page also contains a link back to a guide page. If there is no
link back to the guide page, the guide page will not list the topic page.
This can be useful, because you can spend some time writing the topic
page before you add a link to the guide page. Once the topic page is
finished, you can add the link to the guide page and the finished topic
page will be listed on the guide page.

A topic page could, for instance, contain an introductory paragraph
and a list of steps:

<page xmlns="http://projectmallard.org/1.0/"
 type="topic"
 id="planting">

 <info>
 <link type="guide" xref="index"/>
 </info>

 <title>Planting Beans</title>
 <p>By the end of this page, you will be able to plant your magic
beans and nurture them into a bean sprout.</p>

 <steps>
 <item>
 <p>Dig a hole 5cm deep.</p>
 </item>
 <item>
 <p>Place your magic beans in the hole.</p>
 </item>
 <item>
 <p>Fill the hole with clean dirt and pat it level.</p>
 </item>
 <item>
 <p>Water daily.</p>
 </item>
 </steps>

</page>

Topic pages should fit on your computer screen. If your topic is very
long, you may wish to create a guide page for it and split the long
topic page into a number of shorter topic pages. If you find yourself
having to use more than two heading depths in a topic page, consider
that you may have more than one topic.

15

11. BASIC TUTORIAL

In this tutorial, you will create a simple multiple-page Mallard document
for the fictitious Beanstalk application.

Create the first page

Begin making a Mallard document by writing the index.page page in any
text editor.

index.pageindex.page

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <title>Beanstalk Help</title>

</page>

This simple example is a valid Mallard guide page. Taken alone, it is
also a valid Mallard document.

The entire contents of the page are between the opening <page> and
closing </page> tags. As with all XML formats, every element must
either have opening and closing tags or use the special empty tag
syntax. We'll see the empty tag below with link elements.

There are three attributes on the page element. The xmlns attribute
specifies that the XML tags in this file are from the Mallard 1.0
namespace available at http://projectmallard.org/1.0/index. This must
be set on all Mallard pages. The ID attribute provides a unique
identifier that other pages can use to link to this page. You should
match the ID attribute to the name of the file without the .page
extension: so, for instance, the ID of the file index.page is "index".
The type attribute specifies that this is a guide page.

View your document

You now have a simple document, but you can only view the raw
markup in a text editor. Mallard is just the markup language and a
specification of how documents should be processed. To view
formatted output, you need to process your document with a Mallard
processing tool.

For the purpose of this tutorial, we'll assume you have the GNOME help
viewer Yelp installed. You can view this document by calling yelp from
the command line and passing it the full path to the directory
containing the page files. For example, if you have placed index.page in
/home/drake/mydocument/, enter this at the command line:

$ yelp /home/drake/mydocument/

16

http://projectmallard.org//1.0/index

Add a topic page

Unless you are creating a simple set of instructions for a friend or
colleague, you probably want to have multiple pages in your document.
Add another page to the document by creating a new page file:

planting.pageplanting.page

<page xmlns="http://projectmallard.org/1.0/"
 type="topic"
 id="planting">

 <title>Planting Beans</title>

</page>

Notice that the type attribute is "guide" in index.page and "topic" in
planting.page. Since index.page is a guide page, it can have links
inserted automatically to other pages. In Mallard, guides don't have to
specify which pages they link to. Instead, pages can specify that guides
should link to them. Do this by adding a link element to planting.page:

planting.pageplanting.page

<page xmlns="http://projectmallard.org/1.0/"
 type="topic"
 id="planting">

 <info>
 <link type="guide" xref="index"/>
 </info>

 <title>Planting Beans</title>

</page>

T he <link> element specifies that this page should be linked to from
the guide page <index>, which we created above. This element has no
content, so we use the XML empty element syntax, ending the tag with
/>. The <link> element is inside an <info> element. The <info> element
contains various information about a page, including links to other
pages.

If you view your document again in Yelp, you will see that the front
page now has a link to this page. This is one of the unique features of
Mallard. Rather than requiring pages to specify everything they link to,
Mallard allows pages to insert themselves into other guide pages. This
makes it possible to add pages for plugins and additional functionality
without modifying the original source pages.

Add another guide page

You can add additional guide pages to your document. This allows you
to organize content to match what your readers are looking for. Add a
guide page to link to ways you can use magic beans.

uses.pageuses.page

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"

17

 id="uses">

 <info>
 <link type="guide" xref="index"/>
 <link type="topic" xref="planting"/>
 </info>

 <title>Bean Uses</title>

</page>

Like planting.page, this page has a guide link to index. If you view your
document in Yelp again, you will see that the front page now has two
links.

This page adds a new type of link in the <info> element. Topic links
are the inverse of guide links. When a guide page has a topic link to
another page, it's as if the other page has a guide link to the guide
page. Despite the name, topic links can link to topic pages or guide
pages.

If you view “Planting Beans” in Yelp, you'll see it has links at the top
and bottom to both “Beanstalk Help” and “Bean Uses”. Adding a page
to a guide is like adding it to a section in a traditional linear document,
except that pages can be linked to from multiple guides. This allows
you to provide multiple ways to navigate to a page to better match
how your readers are thinking.

Add content to the topic page

Currently, there's no real content in planting.page. Add content to
explain to the user how to plant magic beans. The following example
shows a basic paragraph and a step list. See the Core section of this
document or http://projectmallard.org/1.0/ for more about paragraphs
and step lists.

planting.pageplanting.page

<page xmlns="http://projectmallard.org/1.0/"
 type="topic"
 id="planting">

 <info>
 <link type="guide" xref="index"/>
 </info>

 <title>Planting Beans</title>

 <p>By the end of this page, you will be able to plant your magic
 beans and nurture them into a bean sprout.</p>

 <steps>
 <item>
 <p>Dig a hole 5cm deep.</p>
 </item>
 <item>
 <p>Place your magic beans in the hole.</p>
 </item>
 <item>
 <p>Fill the hole with clean dirt and pat it level.</p>
 </item>
 <item>
 <p>Water daily.</p>
 </item>
 </steps>

18

http://projectmallard.org/1.0/

</page>

The <p> element is similar to HTML. It creates a simple paragraph. The
<steps> element creates a list of steps to follow. Each <item> element is
one step in the list, and must contain one or more paragraphs or other
block content.

View your documentation in Yelp

To view a Mallard index page in Yelp, type $ yelp index.page at the
command line in the directory where your Mallard index page is stored.

Find more tutorials

Find more Mallard tutorials at
http://projectmallard.org/about/learn/index.

19

http://projectmallard.org/about/learn/index

INTEGRATION
12. INTEGRATION REQUIREMENTS
13. YELP
14. YELP TOOLS
15. BUILD SYSTEM INTEGRATION
16. CONTEXT-SENSITIVE HELP

20

12. INTEGRATION

REQUIREMENTS
The authoring tools for Mallard are as simple as a text editor, but the
build tools depend on other software to make Mallard help easier to
maintain. There are three tools required to integrate a Mallard
document into your Linux software: the Yelp viewer, the yelp‑tools
developer tools for Yelp, and Autotools.

Yelp

Yelp, a GTK+ help viewer, is the most flexible viewer for Mallard
documents. It natively views Mallard, DocBook, HTML, man and info
documents. It also supports the freedesktop.org help system
specification, so that applications which use context‑sensitive help will
open their documentation in Yelp. It depends on yelp-xsl at runtime,
and currently works only on Linux systems.

yelp-tools

yelp‑tools contains the build tools for Mallard documents, and
depends on yelp‑xsl and itstool. yelp‑xsl depends on libxml2 and
libxslt. If you do not have the dependencies installed, install the
yelp‑tools package using the package manager of your Linux
distribution, and the dependencies will also be included. Currently, the
yelp‑tools package is not available for OS X or Windows operating
systems.

Autotools

An M4 macro is supplied with yelp‑tools and helps with the
management of Mallard documentation, translations and validation. To
take full advantage of yelp‑tools in your build system, your project
must have an Autotools build system.

21

13. YELP

Yelp is the GNOME help viewer. It is the default Mallard viewer, but it
can also display DocBook, info, man, and HTML documentation. Yelp is
a good viewer for documentation with external links because complies
with the freedesktop.org help system specification. It can be used
easily across many Linux distributions, but may not work on other
platforms, such as OS X or Windows.

Editor mode

Yelp has a mode for assisting authors who edit Mallard documentation.
To start Yelp in editor mode, run it with the ‑‑editor‑mode argument:

$ yelp --editor-mode

In editor mode, Yelp shows information relevant to editors alongside
elements. For instance, information from the <revision> element is
shown at the top of pages and alongside any links to those pages.
Another useful addition is that editorial comments, added with the
<comment> element, are shown inline and formatted with a background
that makes them highly visible.

Yelp in editor mode

An important difference when Yelp is in editor mode is that stub
pages, specifically those with a file extension of .page.stub, are included
and shown in the document. When Yelp is not in editor mode, stub
pages are not shown, so you should turn editor mode off for final
testing of your documentation.

Automatic updating

Yelp has no refresh button, but the view is automatically refreshed
when a document, or any other file in the document directory, changes.
This generally works very well, but occasionally can cause Yelp to crash
if the document being edited is not valid Mallard. Be sure to
use yelp‑check validate frequently!

22

14. YELP TOOLS

yelp‑tools is a software package of tools which can be used to build
the Mallard document and run validity checks. Even though it is named
yelp‑tools, this package is not dependent on Yelp, the viewer.

All the commands which are a part of yelp‑tools can take either a
single file, a list of files or a directory as an argument.

yelp‑build

yelp‑build is a tool which transforms Mallard pages into other formats.
Currently supported formats are:

HTML
XHTML
ePUB

The generated output can be used in your project or distributed in
some other way. For example, the HTML output can be hosted as a
static website.

yelp‑build html and yelp‑build xhtml

yelp‑build can output Mallard documents to HTML or XHTML. The
filenames for the exported files are taken from the page IDs of the
corresponding Mallard files regardless of the actual names of the
Mallard files. For the following examples, yelp‑build html will be
used. yelp‑build xhtml works in exactly the same way.

You can pass yelp‑build html a list of page files or a directory that
contains all the page files.

$ yelp-build html index.page foo.page bar.page
$ yelp-build html .

The generated output will be self contained, meaning that only the
pages that you pass to yelp‑build will be included and linked to. If you
want to include links to pages which you are not building, you need to
generate a cache which includes them and pass it to yelp‑build.

By default, the exported HTML files are stored in the current working
directory, but you can also use the ‑o option to specify an output
directory of your choice. The ‑o argument also exports any image and
video files enclosed within media elements in the help pages.

$ mkdir html_out
$ yelp-build html -o html_out .

yelp-build epub

23

yelp‑build can output Mallard documents to the Electronic Publication
(ePUB) format. The output file is named index.epub by default but you
can use the ‑o option and specify a different output filename.

$ yelp-build epub help/ -o book.epub

yelp‑build cache

A cache file of the whole document or some of the help pages can be
used by other tools. For example, if you want to generate HTML only
for a guide page, but you want it to show the links to all the topics
which are on it, you will need to create a cache of the topics and pass
it to yelp‑build when you generate the HTML.

A cache file is necessary to build other formats from Mallard
documents. Cache files are generated automatically when you build
Mallard documents in other formats, but yelp‑build can also explicitly
generate cache files.

$ yelp-build cache *.page

yelp-check

yelp‑check is a tool that helps validate Mallard documentation. It can
find broken external and internal links, files that have unmatched page
IDs and filenames, orphaned pages and it can validate the XML in the
pages against a Relax‑NG schema. It can also display any editorial
comments the revision status status of a page.

All of the yelp‑check tools can take individual pages or a directory of
pages as an argument.

yelp‑check comments

T he <comment> element in Mallard allows you to embed editorial notes
in the XML. Mallard comments are printed with the page name and
section ID that contains them, the author of the comment and the
date on which the comment was made, which are taken from the
<cite> element.

yelp‑check links and yelp‑check hrefs

yelp‑check links verifies that all internal (xref) links are valid. If the
value does not correspond to an actual ID in the document,
yelp‑check links prints the source and target of the link. If you pass
only a set of pages, yelp‑check links will only know about those pages,
and will report links as broken if they point to pages which you are not
validating. You can also supply a Mallard cache file that contains all the
pages in the document and pass this to yelp‑check orphans with the ‑c
argument when validating individual pages.

yelp‑check hrefs checks for the validity of external links. You will need
to be connected to the internet for external links to be verified.

24

yelp‑check ids

yelp‑check ids is useful to check if the Mallard file names match their
corresponding page IDs. It is not mandatory for these to match, but
it's generally considered a best practice.

yelp‑check orphans

Topic pages should be accessible from other Mallard pages.
yelp‑check orphans finds pages which are not linked to from other help
pages.

As with other yelp‑check tools, if you pass only a set of pages, it will
only know about those pages, and will probably report many false
positives. You can also supply a Mallard cache file that contains all the
pages in the document and pass this to yelp‑check orphans with the ‑c
argument when validating individual pages.

yelp‑check status

yelp‑check status outputs the current progress status of different
Mallard page files, taken from the status attribute of the <revision>
element.

When a page has more than one <revision> element, the one with the
latest date attribute is chosen. If the latest revision element has no
status attribute, or if there is no revision element, the status is "none".

yelp-new

You can generate Mallard pages with basic structure using yelp‑new. To
generates pages from default templates you need to specify the type
of page and the page ID. You can also generate Mallard pages by
supplying your own custom templates. This is useful when many of
your pages have a common layout. Template files can be installed with
yelp‑new or you can keep them in your working directory. To create
your own template, create your .page template, then append .tmpl to
the filename.

25

15. BUILD SYSTEM

INTEGRATION
Autotools integration with yelp.m4

yelp‑tools provides comprehensive integration with Autotools build
systems. To integrate with an existing project using Autotools, add the
following line to configure.ac:

YELP_HELP_INIT

This adds several checks for tools that are used to build and
transform Mallard documentation. Verify that the checks succeeded by
looking for the following lines in the output from configure:

checking whether ln -s works... yes
checking for itstool... itstool
checking for xmllint... xmllint

Add build rules for Mallard documentation

To use the integration once the configure checks are in place and have
succeeded, you need to add some build rules to a Makefile.am in your
project, traditionally help/Makefile.am. A simple Makefile.am for a
project with one page called index.page is shown below:

@YELP_HELP_RULES@
HELP_ID = myproject
HELP_FILES = index.page
HELP_MEDIA = media/logo.png

T he HELP_ID should match the tarball name of the project, which is
usually set in configure.ac. It controls the installation directory, which
by default is /usr/share/help/LOCALE/HELP_ID. In this case, the index.page
file should be placed in a subdirectory called C, which has a special
meaning of having no associated localization. Conventionally, the C
locale is understood to be English language.

If you are using images in your documentation, listed after HELP_MEDIA,
they must also be inside the C subdirectory and are normally inside a
dedicated media directory.

Remember that when adding a new Makefile.am to a project, it must
also be added to AC_CONFIG_FILES in configure.ac:

AC_CONFIG_FILES([Makefile.am help/Makefile.am])

Finally, the help directory should be added to the toplevel Makefile.am:

SUBDIRS = help

26

This simple example already has some quite useful automation. The
files listed in HELP_FILES and HELP_MEDIA are installed to the installation
directory during make install. Be careful that any files which are
transcluded with XInclude are also listed in HELP_FILES, as otherwise
those files will not be installed! During make check, the files listed in
HELP_FILES are validated against the Mallard schema with
yelp‑check validate, so that any tarball release created with
make distcheck will have valid documentation included.

Verify the Makefile.am changes by running make install and make check,
and checking the output to see if Mallard pages were installed and
validated:

$ make install
install -m 644 C/index.page /usr/share/help/C/myproject/index.page

$ make check
xmllint --noout --noent --path C --xinclude C/index.page

Translations

Mallard documents are translated with itstool and portable object (PO)
files, which are a standard way of translating messages on Unix-like
systems. Fortunately, integration with yelp.m4 hides much of the
underlying complexity of the tools. For a project already using the build
rules from yelp‑tools, change the directory to where the Makefile.am
containing @YELP_HELP_RULES@ is located and run make pot:

$ cd help
$ make pot

This takes the list of Mallard pages in HELP_FILES, extracts the
translatable strings and merges them into a PO template (POT) file
which will be named HELP_ID.pot, where HELP_ID is the name of the
installation directory set with HELP_ID. The POT file contains a list of
translatable strings combined with information about the location of
the string in files and any comments which the help author may have
added.

Integrating translations to the build system

Once a PO file has been created for a particular locale from the
template, the PO file can be added to the build system so that the
translated documentation can be installed and validated just like other
Mallard pages.

The PO file should be named after the locale, formed by combining the
two-letter ISO 639 language code with the two-letter ISO 3166 country
code and an underscore, for example en_GB for English spoken in
Great Britain. Create a directory for the locale, and move the POT file
into that directory:

$ mkdir help/en_GB
$ mv myproject.pot help/en_GB/en_GB.po

Once the PO file is in the correct location, add the following line to
help/Makefile.am:

27

HELP_LINGUAS = en_GB

This integrates the British English language translation with the yelp.m4
build process, so that the translations from the PO file are used to
create translated Mallard pages during the make process. As with the
basic integration, the translated pages are validated during make check
and installed in the install directory during make install.

Verify the Makefile.am changes by running make install and make check,
and checking the output to see if Mallard pages were installed and
validated:

$ make install
install -m 644 C/index.page /usr/share/help/C/myproject/index.page
install -m 644 C/index.page /usr/share/help/en_GB/myproject/index.page

$ make check
xmllint --noout --noent --path C --xinclude C/index.page
xmllint --noout --noent --path en_GB --xinclude en_GB/index.page

An important concern when translating Mallard documentation is that a
translation can fail to validate, and this will cause make check to fail with
an error.

28

16. CONTEXT-SENSITIVE HELP

For the most complete integration of Mallard with an application,
context-sensitive links can be added to the application that link to
pages or sections in documentation. For example, a preferences dialog
might have a help button which, when clicked, would open a guide page
that links to topics about changing the application preferences.

Implementing context-sensitive help implies certain requirements, such
as being able to address specific sections in Mallard documentation
and a documentation viewer that is able to understand the addressing
scheme.

Help URIs

A linking scheme is required in order to reference specific sections or
pages of documentation from an external resource. Mallard does not
prescribe a linking scheme, so it is a feature that is dependent on the
documentation viewer. Yelp is the principal Mallard documentation
viewer, and conforms to the draft freedesktop.org help system
specification. An example of a link to the index for the hypothetical
myproject project looks as follows:

help:myproject

Link URIs assume that the documentation is installed to the system-
wide help directory. While it is possible to override this directory
locally, it is not recommended. Refer to the help system specification
for more information.

To link to a specific page, add a Unix path separator '/' and the page
ID to the URI:

help:myproject/mypage

No file extensions are required, as Yelp identifies the extension
automatically. Additionally, sections on a page can be linked to by
adding the section ID to the end of the URI, prefixed with a '# ':

help:myproject/mypage#mysection

You can test the URI by running Yelp with the URI as an argument. For
example:

$ yelp help:myproject/mypage

The above command would run Yelp and show the mypage page in the
myproject documentation.

Modifying applications to launch help

29

http://www.freedesktop.org/wiki/Specifications/help-system/

Given a linking scheme, applications can link from a specific context to
the corresponding part of the documentation. An obvious example is
linking from a help button in a hypothetical export dialog to
documentation about exporting. Assuming an application myproject,
with a Mallard page export, the URI might look as follows:

help:myproject/export

Application support for the linking scheme depends on the underlying
toolkit. For applications using GTK+, the gtk_show_uri() function
accepts a URI as an argument, and opens Yelp with the given URI. For
example, the following line of code launches the default help viewer,
generally Yelp, with the URI given above:

gtk_show_uri (gdk_screen_get_default (), "help:myproject/export",
GDK_CURRENT_TIME, NULL);

Other toolkits should have a similar function for opening URIs, but the
details are outside of the scope of this document. Consult the
reference documentation of your toolkit for details.

Example preferences dialog, with help button

30

EXTENDED MALLARD
17. PAGES AND SECTIONS
18. INFORMATION ELEMENT
19. LINKING PAGES
20. TITLES
21. PAGE DESCRIPTIONS
22. BLOCK ELEMENTS
23. INLINE ELEMENTS
24. EDITORIAL COMMENTS
25. LISTS
26. TABLES
27. STYLE ATTRIBUTE
28. XINCLUDE
29. NAMESPACES

31

17. PAGES AND SECTIONS

About

The <page> element is the root or top-level element of a Mallard page
file. Every page has to contain it and it cannot occur in any other
element. The <page> element must contain an id attribute with a unique
argument. It should also contain a type attribute which should specify
whether the page is a guide or topic.

Both guide and topic pages can contain sections, defined by the
<section> element. These are a prominent logical part of a page or
another section. Sections also have unique IDs, which can be linked to
directly.

Example

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <title>My application</title>

 <section id="main">
 <title>Main features</title>
 </section>

 <section id="preferences">
 <title>Preferences</title>
 </section>

 <section id="problems">
 <title>Common problems and questions</title>
 </section>

</page>

Learn more

For more on Mallard pages see
http://projectmallard.org/1.0/mal_page and for more on Mallard sections
see http://projectmallard.org/1.0/mal_section.

32

http://projectmallard.org/1.0/mal_page
http://projectmallard.org/1.0/mal_section

18. INFORMATION ELEMENT

About

T he <info> element contains metadata about a page or section such
as the names of authors and editors of the page, the version number
of the package you are documenting, links to any guide pages if
necessary, alternative titles and a short description of the page.

T he <info> element is the right place to link your topic back to your
index. You may then want to add an alternative title, for example a
different title to be shown for links to the page.

Use the <revision> element to keep track of which version of the
software the documentation was written and when it was last updated.

This is also the right place to license the page and add a short
description which will show up in the guide pages which contain the
topic.

<info> can be only at the start of a page or section.

Example

<info>
 <link type="guide" xref="index" group="info"/>
 <credit type="author">
 <name>Jack Giant</name>
 <email>jackgiant@gnome.org</email>
 </credit>

 <license href="http://creativecommons.org/licenses/by-sa/3.0/us/">
 <p>This work is licensed under a
 <link href="http://creativecommons.org/licenses/by-
sa/3.0/us/">Creative
 Commons Attribution-Share Alike 3.0 United States
License</link>.</p>
 <p>As a special exception, the copyright holders give you
permission to
 copy, modify, and distribute the example code contained in this
document
 under the terms of your choosing, without restriction.</p>
 </license>

 <desc>Include metadata and automatic links for pages and
sections.</desc>
</info>

Learn more

For more on the Mallard info element
see http://projectmallard.org/1.0/mal_info.

33

http://projectmallard.org/1.0/mal_info

19. LINKING PAGES

About

One of the greatest benefits of Mallard is automatic linking. Pages and
sections are able to declare links to and from other pages and
sections. Links are added to the <info> element.

Example

<page xmlns="http://projectmallard.org/1.0/"
 type="topic"
 id="page-create">

 <info>
 <link type="guide" xref="index"/>
 <link type="seealso" xref="guide-create"/>
 </info>

 <title>Create a topic page</title>

 <p>Use topic pages to write instructions. These pages should usually
contain tasks, but can also contain other documentation.</p>

</page>

Link a topic to a guide

The most basic type of linking is a topic page linked to a guide page.
This is done using a <link> element inside the <info> element of the
topic page, which is a type="guide".

Use the guide type when the link is going to point to a guide page. In
other words, if you want your page to be listed in a guide page you
can include a link to the guide page in it.

This type of linking is very useful as it allows you to add and delete
pages without needing to worry about updating links.

If you want to link to a section in the page, you just need to specify
the section in the xref. For example, to link to a section in the index
which has an ID topics:

<info>
 <link type="guide" xref="index#topics"/>
</info>

Link a guide to a topic

If you prefer a more traditional style linking system, you can add the
link to the page on which it appears. These links are still automatic,
and will not be shown if the target of the link cannot be found. This is
especially useful when creating a pool of reusable content, as any
broken links will automatically disappear when the documentation is
viewed.

34

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <info>
 <link type="topic" xref="page-create"/>
 </info>

 <title>Welcome to your application help</title>

</page>

Reference another page

Use seealso type links to link related topic and guide pages. When you
use a seealso link on a certain page, it is automatically duplicated on
the page to which it is linked. This means that if you use a seealso link
to page B on page A, a seealso link to page A is automatically included
on page B.

A topic page with a seealso link to a guide page

<page xmlns="http://projectmallard.org/1.0/"
 type="topic"
 id="topic-create">

 <info>
 <link type="seealso" xref="guide-create"/>
 </info>

 <title>Create a topic page</title>

 <p>Use topic pages to write instructions. These pages should usually
contain tasks, but can also contain other documentation.</p>

</page>

A guide page with a seealso backlink from a topic page

35

<page xmlns="http://projectmallard.org/1.0/"
 type="topic"
 id="guide-create">

 <title>Create a guide page</title>

 <p>Use guide pages to list topic pages.</p>

</page>

Learn more

For more about Mallard links, including specifying link groups, setting
link order, and creating other kinds of links, see
http://projectmallard.org/1.0/mal_links#section

36

http://projectmallard.org/1.0/mal_links#section

20. TITLES

T he <title> element is used to mark up the title for a <page>,
<section>, <list>, <table> or formal block element.

Primary title

The primary title of a page or section is the one specified in the block
context and used for display purposes. While this title is not an
informational title, it is used as fallback for all informational titles.

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <title>User help for my application</title>

</page>

Informational titles

Informational titles are used to specify alternative titles for pages or
sections, and appear inside the <info> element of each. The type
attribute specifies the purpose of the informational title, and can
be link, sort or text.

linklink

Link titles are used as alternate title text for automatic links. Pages and
sections can have multiple link titles, up to one for each type of
backlink. When automatic text must be generated for a <link> element,
it is taken first from the link titles, falling back to the primary title if no
suitable link title is found.

If you do not specify a role for the link title, it will be used for all link
types.

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <info>
 <title type="link">My application help</title>
 </info>

 <title>User help for my application</title>

</page>

If you want a specific link title to be used only for a
guide, topic, seealso, series or trail, you can specify it in the role:

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <info>
 <title type="link" role="seealso">Application help</title>
 </info>

37

 <title>User help for my application</title>

</page>

sortsort

Sort titles allow you to specify an alternate title to be used when
sorting the page or section. This is useful for excluding leading articles
such as “an” and “the”.

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <info>
 <title type="sort">Application help</title>
 </info>

 <title>User help for my application</title>

</page>

texttext

Text titles are used wherever a plain text string without formatting is
required. This is useful for window titles or labels in user interfaces
where formatting and inline images are difficult or impossible. This is
particularly useful when a title contains an image with fallback text, but
you do not want the fallback text to appear in places such as window
titles.

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <info>
 <title type="text">Application Help</title>
 </info>

 <title>This is the primary title</title>

</page>

Learn more

For more on Mallard titles, see
http://projectmallard.org/1.0/mal_block_title and
http://projectmallard.org/1.0/mal_info_title.

38

http://projectmallard.org/1.0/mal_block_title
http://projectmallard.org/1.0/mal_block_title

21. PAGE DESCRIPTIONS

About

Use the <desc> element to provide a short description for a page or
section. This description is generally not shown on the page itself, but
is used in automatic links to the page or section.

Examples

Use the <desc> element to show a short description of the topic on
guide pages:

<info>
 <desc>Use applications and the desktop without a mouse.</desc>
</info>

<title>Keyboard navigation</title>

Short description of the Keyboard navigation page

Using <desc> to create links to sub-topics in a guide page:

<info>
 <desc>
 <link xref="keyboard">Keyboard</link>,
 <link xref="mouse">mouse</link>,
 <link xref="prefs-display">display</link>,
 <link xref="prefs-language">languages</link>,
 <link xref="user-accounts">user accounts… </link>
 </desc>
</info>

<title>User & system settings</title>

Sub-topics on a guide page

39

40

22. BLOCK ELEMENTS

About

There are two types of block elements in Mallard: basic and formal.
Basic block elements include paragraphs, code and interactive shell
blocks, media, and examples.

Formal block elements, such as quotes, comments, figures, listings, and
notes, can include a title element before the block element content.
Some of the formal block elements may also contain descriptions and
citations.

Some basic block elements can be inside a formal block element. For
example, you can make media elements more prominent by putting
them inside a <figure> block. In the example below, the basic block
element <code> is inside the formal block element <listing>. Note that
the <listing> block includes a title and a description before the <code>
block. The <title> element contains a <file> inline element specifying a
file name: inline elements will be covered in the next part of this book.

Example

<listing>
 <title><file>index.page</file></title>
 <desc>A first Mallard page</desc>

 <code><![CDATA[
<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">
 <!-- Content goes here -->
</page>]]></code>

</listing>

Learn more

For more on block elements, see the Mallard specification on block
elements at http://projectmallard.org/1.0/mal_block

41

http://projectmallard.org/1.0/mal_block

23. INLINE ELEMENTS

About

You can use inline elements within block elements (such as paragraphs)
or within other inline elements to identify names of applications, file
names, code snippets, commands, output, GUI labels, GUI sequences,
keyboard strokes and sequences, system items, variables, graphics,
multimedia objects, and other commonly occurring types of content in
software help documentation. You can also use inline elements to
create links and spans or to add simple emphasis.

Wrapping this kind of content within an inline element means that the
content can be given a distinct style that will give the user a useful
visual clue. Even if the content remains un-styled, however, this kind of
semantic markup is often very useful for other documentation content
producers.

Example

<p>To open a file in <app>Beanstalk</app>, select
<guiseq><gui>File</gui><gui>Open</gui></guiseq> from the menu and
choose the file you would like to open. If you prefer to use the
<app>Beanstalk CLI</app>, you can enter <cmd>beanstalk
<var>file</var></cmd> at the command line, replacing <var>file</var>
with the name of the file.</p>

Inline links

One of the most commonly used inline elements is <link>. The <link>
element takes an xref or href attribute depending on whether you are
linking to an internal or external page. For example, you may want to
link a <gui> command sequence to a page where it has been described
in greater detail. The value of the xref attribute would be the ID of the
linked page, while the value of the href attribute would be the URI of
the external page. Inline links can also take an action attribute that will
perform a particular action when a link is clicked. Links can also be
created by putting an xref or href attribute within any inline element.

In the example below, a one-way link is created to the section
whose id="open" in the topic page whose id="file_menu".

Inline link example

<p>To open a file in <app href="www.example.com">Beanstalk</app>,

<link xref="file_menu#open">select

<guiseq><gui>File</gui><gui>Open</gui></guiseq></link> from the
menu and choose the file you would like to open.</p>

Learn more

42

For more on Mallard inline elements, see
http://projectmallard.org/1.0/mal_inline

43

http://projectmallard.org/1.0/mal_inline

24. EDITORIAL COMMENTS

About

You can leave editorial comments for other writers and for later
reference, including information about the note. Editorial comments
can be printed to a terminal using yelp‑tools or viewed in Yelp using
editor mode.

Example

<comment>
 <title>Mallards are dabbling ducks</title>
 <cite date="2009-05-07" href="mailto:drake@example.com">Drake</cite>
 <p>The information in this section is wrong. Mallards are dabbling
 ducks, not diving ducks.</p>
</comment>

Learn more

For more on comments, see the Mallard specification at
http://projectmallard.org/1.0/mal_block_comment

44

http://projectmallard.org/1.0/mal_block_comment

25. LISTS

About

A list is a block element. It can have a title. It contains a number of
item elements. List elements allow for nesting of formal block elements
such as paragraphs, notes, and other lists.

Basic lists

Lists can be created with the <list> element. The default list is
unordered, with list items marked with bullets or other glyphs. Each
item in the list should be enclosed in <item> tags, and the content of
each item must be enclosed in <p> tags or other block element tags.

Basic list example

<list>
 <item>
 <p>Milk</p>
 </item>
 <item>
 <p>Cauliflower</p>
 </item>
 <item>
 <p>Potatoes</p>
 </item>
</list>

Step lists

The <steps> element will create an ordered list that describes a set of
tasks in sequence. Each item in the list should be enclosed in <item>
tags, and the content of each item must be enclosed in <p> tags or
other block element tags.

Step list example

<steps>
 <item>
 <p>Heat milk to boiling in a saucepan.</p>
 </item>
 <item>
 <p>Add chopped cauliflower.</p>
 </item>
 <item>
 <p>Add peeled and chopped potatoes.</p>
 </item>
 <item>
 <p>Cover pan, reduce heat, and simmer for one hour.</p>
 </item>
</steps>

Terms lists

45

Use the <terms> tag to create a list of terms along with the
corresponding definition of each term. This is useful when you are
trying to create a glossary of related technical terms.

Terms list example

<terms>
 <item>
 <title>Boil</title>
 <p>To heat a liquid until it bubbles and begins to turn to
vapor.</p>
 </item>

</terms>

Learn more

For more on Mallard lists, see http://projectmallard.org/about/learn/list.

46

http://projectmallard.org/about/learn/list

26. TABLES

About

Tables in Mallard documents are created using similar syntax to HTML.
You can create tables with frames, shading, and rules between rows
and columns. You can also have cells that span several columns or
rows in a table. A basic table, which is created without using any
<table> attributes, will not have table borders, shading or rules that
divide rows and columns.

Example

<table frame="all" rules="all">
 <tr>
 <td><p>One</p></td>
 <td><p>Two</p></td>
 <td><p>Three</p></td>
 <td><p>Four</p></td>
 </tr>
 <tr>
 <td rowspan="2"><p>Rows</p></td>
 <td><p>Two</p></td>
 <td colspan="2"><p>Columns</p></td>
 </tr>
 <tr>
 <td><p>Two</p></td>
 <td><p>Three</p></td>
 <td><p>Four</p></td>
 </tr>
</table>

Learn more

Learn more about Mallard tables
at http://projectmallard.org/1.0/mal_table.

47

http://projectmallard.org/1.0/mal_table

27. STYLESTYLE ATTRIBUTE

About

The style attribute takes a space-separated list of styling hints. The
display tool parses those hints to style the text as it is presented to
the reader. Any displayable Mallard element can have a style attribute.

Examples

 <note style="info">
 <p>Settings from the <code>user</code> database file
 will take precedence over the settings in the keyfile.</p>
 </note>

 <note style="important">
 <p><cmd>dconf update</cmd> must be run whenever you modify a
keyfile.</p>
 </note>

 <note style="tip">
 <p>You can also <link xref="dconf-lockdown">lock down</link> the
 settings to prevent users from changing them.</p>
 </note>

 <note style="bug">
 <p>If dconf had any bugs, this is where you would mention them.
 Unfortunately, dconf is awesome and does not have any bugs.</p>
 </note>

Note styles as displayed in Yelp

48

49

28. XINCLUDE

About

XInclude is a mechanism for merging one XML document into another,
which is particularly useful if you reuse the same text in a number of
pages. Mallard offers full XInclude support.

You must have a complete and validated file to be included. In the
container file, use the include tag to add the file name of the included
file and the namespace XInclude, from the URL
http://www.w3.org/2001/XInclude.

For build integration, you must add the included file to the Makefile.am.

For example, you can place your license in a separate document and
include that file in all of your pages.

Examples

index.page

<page xmlns="http://projectmallard.org/1.0/"
 type="guide"
 id="index">

 <info>
 <include href="legal.xml" xmlns="http://www.w3.org/2001/XInclude"/>
 </info>

 <title>Write Mallard help</title>

</page>

legal.xml

<license xmlns="http://projectmallard.org/1.0/"
 href="http://creativecommons.org/licenses/by-sa/3.0/">

 <p>This work is licensed under a
 <link href="http://creativecommons.org/licenses/by-sa/3.0/">Creative
Commons
 Attribution-ShareAlike 3.0 Unported License</link>.</p>

</license>

50

29. NAMESPACES

About

Namespaces contain a list of elements and their specifications. They
serve as disambiguation in a file that might have similar names for
elements. You can also use a namespace to identify an element that is
not present in the default namespace.

For example, if you want to use the <table> element to describe a
physical table as well as the table metadata, you would define each
<table> specification in a different namespace. While using the <table>
element in your XML page you would use the element along with a
reference to the namespace that contains it.

The default namespace

The default namespace for Mallard is at http://projectmallard.org/1.0.
It contains all basic elements and their specifications. This namespace
alone is probably sufficient for basic and intermediate usage of
Mallard.

External namespaces

External namespaces contain specifications for elements that are not
present in the default namespace. They may also contain additional
specifications for an element that is already present in the default
namespace. Commonly-used external namespaces in Mallard include
http://projectmallard.org/experimental

and http://www.w3.org/2005/11/its.

Each external namespace can be given a short alias which can then be
used with the elements it contains.

Example

<page xmlns="http://projectmallard.org/1.0/"
 xmlns:its="http://www.w3.org/2005/11/its"
 type="topic"
 id="external-namespaces">

 <info>
 <credit type="author">
 <name>Wanda</name>
 <email its:translate="no">wandawanda@gnome.org</email>
 </credit>
 </info>

Experimental namespace

51

The experimental namespace contains new Mallard features that are
currently being tested. Not all of these features can currently be
viewed in Yelp. You should not use these features unless they are
absolutely necessary and only after comprehensive testing, as they
may cause display problems in Yelp.

Experimental features include options to:

highlight sections of the text in another color,
display images and pages as thumbnails,
add dynamic glossaries,
introduce a variety of style elements in the documentation.

Learn more

For more information on experimental features, check
out https://wiki.gnome.org/Yelp/Mallard.

52

https://wiki.gnome.org/Yelp/Mallard

APPENDIX
30. FURTHER RESOURCES

53

30. FURTHER RESOURCES

The Project Mallard website - http://projectmallard.org

The Project Mallard website contains tutorials, schemas, specifications,
early drafts of the language, and candidates for adoption as well as
information about the project's history and contributors.

The Mallard mailing list -
 http://projectmallard.org/mailman/listinfo/mallard-list

Join the Mallard mailing list to get help with authoring documentation in
Mallard or to become a contributor to the project. See also the mailing
list archives at http://projectmallard.org/pipermail/mallard-list/

Mallard Cheat Sheet
- http://blogs.gnome.org/shaunm/files/2012/01/mallardcheatsheet.png

The Mallard Cheat Sheet lists the key elements of Mallard. It shows
you how to create pages, sections, links, and automatic links; how to
create paragraphs, lists, and tables; how to include multimedia, code,
GUI paths, and key combinations; how to specify languages, language
directionality, and translator notes; and how to include meta-
information such as page credits, page blurbs, and page revision notes.
Plus more: all in one handy page.

GNOME - http://www.gnome.org/

GNOME is a desktop environment and graphical user interface that
runs on top of UNIX-based operating systems such as Linux. GNOME is
part of the GNU project and is free open source software; Mallard is
the preferred system of help documentation for GNOME and for
several GNOME applications.

The Gist - http://blogs.gnome.org/shaunm

The Gist: Thoughts on Open Source, Tech Comm, and XML is the blog of
primary Mallard developer Shaun McCance. There are several useful
posts, including the following:

"Yelp editor mode," April 2, 2010 -
 https://blogs.gnome.org/shaunm/2010/04/01/yelp-editor-mode/
"Mallard: State of the Duck," March 19, 2013 -
http://blogs.gnome.org/shaunm/2013/03/09/mallard-state-of-the-
duck/

Freedesktop.org help system specification -
http://www.freedesktop.org/wiki/Specifications/help-system/

54

http://projectmallard.org
http://projectmallard.org/mailman/listinfo/mallard-list
http://blogs.gnome.org/shaunm/files/2012/01/mallardcheatsheet.png
http://www.gnome.org
http://blogs.gnome.org/shaunm
https://blogs.gnome.org/shaunm/2010/04/01/yelp-editor-mode/
http://blogs.gnome.org/shaunm/2013/03/09/mallard-state-of-the-duck/
http://www.freedesktop.org/wiki/Specifications/help-system/

Yelp, the principal Mallard viewer, uses the freedesktop.org help
system specification as the basis for its link URI scheme. The
specification describes a link URi scheme for help (Mallard and HTML
pages), info and man pages, as well as an override mechanism using
the environment variable XDG_DATA_DIRS.

itstool - http://itstool.org/

T ranslate your Mallard documentation using PO files with itstool. The
build system integration of yelp-tools uses itstool to extract
translatable strings from Mallard documentation. Use ITS features for
finer control over translation of Mallard content.

55

http://itstool.org/

	INTRODUCTION TO MALLARD
	1. WHY MALLARD?
	2. ABOUT THIS BOOK
	3. ABOUT MALLARD
	What Mallard is
	What Mallard is not

	4. PRE-REQUISITES
	Tools
	Skills

	5. COMPARING MALLARD TO OTHER TOOLS
	6. PROJECTS THAT USE MALLARD
	GNOME
	Ubuntu
	Shotwell

	7. MALLARD IN ACTION
	Topic page XML
	Topic page in Yelp help viewer

	8. BASIC CONCEPTS
	9. GUIDE PAGES
	10. TOPIC PAGES
	11. BASIC TUTORIAL
	Create the first page
	View your document
	Add a topic page
	Add another guide page
	Add content to the topic page
	View your documentation in Yelp
	Find more tutorials

	12. INTEGRATION REQUIREMENTS
	Yelp
	yelp-tools
	Autotools

	13. YELP
	Editor mode
	Automatic updating

	14. YELP TOOLS
	yelp‑build
	yelp-check
	yelp-new

	15. BUILD SYSTEM INTEGRATION
	Autotools integration with yelp.m4
	Add build rules for Mallard documentation
	Translations
	Integrating translations to the build system

	16. CONTEXT-SENSITIVE HELP
	Help URIs
	Modifying applications to launch help

	17. PAGES AND SECTIONS
	About
	Example
	Learn more

	18. INFORMATION ELEMENT
	About
	Example
	Learn more

	19. LINKING PAGES
	About
	Example
	Link a topic to a guide
	Link a guide to a topic
	Reference another page
	Learn more

	20. TITLES
	link
	sort
	Learn more

	21. PAGE DESCRIPTIONS
	About
	Examples

	22. BLOCK ELEMENTS
	About
	Example
	Learn more

	23. INLINE ELEMENTS
	About
	Example
	Inline links
	Inline link example

	24. EDITORIAL COMMENTS
	About
	Example
	Learn more

	25. LISTS
	About
	Basic lists
	Step lists
	Terms lists
	Learn more

	26. TABLES
	About
	Example
	Learn more

	27. STYLE ATTRIBUTE
	About
	Examples
	Note styles as displayed in Yelp

	28. XINCLUDE
	About
	Examples

	29. NAMESPACES
	About
	The default namespace
	External namespaces
	Learn more

	30. FURTHER RESOURCES

