Example Code: Root Solving
Root solving is (among other things) a key step in the raytracing of many of BRL-CAD's primitives. The following examples illustrate how to solve various types of polynomial equations using BRL-CAD's root solver.
#include "common.h" #include "bu.h" #include "vmath.h" #include "bn.h" #include "raytrace.h"
int main(int argc, char *argv[]) { bn_poly_t equation; /* holds our polynomial equation */ bn_complex_t roots[BN_MAX_POLY_DEGREE]; /* stash up to six roots */ int num_roots; if (argc > 1) bu_exit(1, "%s: unexpected argument(s)\n", argv[0]);
/********************************************* * Linear polynomial (1st degree equation): * A*X + B = 0 * [0] [1] <= coefficients */ equation.dgr = 1; equation.cf[0] = 1; /* A */ equation.cf[1] = -2; /* B */ /* print the equation */ bu_log("\n*** LINEAR ***\n"); bn_pr_poly("Solving for Linear", &equation); /* solve for the roots */ num_roots = rt_poly_roots(&equation, roots, "My Linear Polynomial"); if (num_roots == 0) { bu_log("No roots found!\n"); return 0; } else if (num_roots < 0) { bu_log("The root solver failed to converge on a solution\n"); return 1; } /* A*X + B = 0 * 1*X + -2 = 0 * X - 2 = 0 * X = 2 */ /* print the roots */ bu_log("The root should be 2\n"); bn_pr_roots("My Linear Polynomial", roots, num_roots);
/********************************************* * Quadratic polynomial (2nd degree equation): * A*X^2 + B*X + C = 0 * [0] [1] [2] <=coefficients */ equation.dgr = 2; equation.cf[0] = 1; /* A */ equation.cf[1] = 0; /* B */ equation.cf[2] = -4; /* C */ /* print the equation */ bu_log("\n*** QUADRATIC ***\n"); bn_pr_poly("Solving for Quadratic", &equation); /* solve for the roots */ num_roots = rt_poly_roots(&equation, roots, "My Quadratic Polynomial"); if (num_roots == 0) { bu_log("No roots found!\n"); return 0; } else if (num_roots < 0) { bu_log("The root solver failed to converge on a solution\n"); return 1; } /* A*X^2 + B*X + C = 0 * 1*X^2 + 0*X + -4 = 0 * X^2 - 4 = 0 * (X - 2) * (X + 2) = 0 * X - 2 = 0, X + 2 = 0 * X = 2, X = -2 */ /* print the roots */ bu_log("The roots should be 2 and -2\n"); bn_pr_roots("My Quadratic Polynomial", roots, num_roots);
/***************************************** * Cubic polynomial (3rd degree equation): * A*X^3 + B*X^2 + C*X + D = 0 * [0] [1] [2] [3] <=coefficients */ equation.dgr = 3; equation.cf[0] = 45; equation.cf[1] = 24; equation.cf[2] = -7; equation.cf[3] = -2; /* print the equation */ bu_log("\n*** CUBIC ***\n"); bn_pr_poly("Solving for Cubic", &equation); /* solve for the roots */ num_roots = rt_poly_roots(&equation, roots, "My Cubic Polynomial"); if (num_roots == 0) { bu_log("No roots found!\n"); return 0; } else if (num_roots < 0) { bu_log("The root solver failed to converge on a solution\n"); return 1; } /* print the roots */ bu_log("The roots should be 1/3, -1/5, and -2/3\n"); bn_pr_roots("My Cubic Polynomial", roots, num_roots);
/******************************************* * Quartic polynomial (4th degree equation): * A*X^4 + B*X^3 + C*X^2 + D*X + E = 0 * [0] [1] [2] [3] [4] <=coefficients */ equation.dgr = 4; equation.cf[0] = 2; equation.cf[1] = 4; equation.cf[2] = -26; equation.cf[3] = -28; equation.cf[4] = 48; /* print the equation */ bu_log("\n*** QUARTIC ***\n"); bn_pr_poly("Solving for Quartic", &equation); /* solve for the roots */ num_roots = rt_poly_roots(&equation, roots, "My Quartic Polynomial"); if (num_roots == 0) { bu_log("No roots found!\n"); return 0; } else if (num_roots < 0) { bu_log("The root solver failed to converge on a solution\n"); return 1; } /* print the roots */ bu_log("The roots should be 3, 1, -2, -4\n"); bn_pr_roots("My Quartic Polynomial", roots, num_roots);
/******************************************* * Sextic polynomial (6th degree equation): * A*X^6 + B*X^5 + C*X^4 + D*X^3 + E*X^2 + F*X + G = 0 * [0] [1] [2] [3] [4] [5] [6] <=coefficients */ equation.dgr = 6; equation.cf[0] = 1; equation.cf[1] = -8; equation.cf[2] = 32; equation.cf[3] = -78; equation.cf[4] = 121; equation.cf[5] = -110; equation.cf[6] = 50; /* print the equation */ bu_log("\n*** SEXTIC ***\n"); bn_pr_poly("Solving for Sextic", &equation); /* solve for the roots */ num_roots = rt_poly_roots(&equation, roots, "My Sextic Polynomial"); if (num_roots == 0) { bu_log("No roots found!\n"); return 0; } else if (num_roots < 0) { bu_log("The root solver failed to converge on a solution\n"); return 1; } /* print the roots */ bu_log("The roots should be 1 - i, 1 + i, 2 - i,2 + i, 1 - 2*i, 1 + 2*i \n"); bn_pr_roots("My Sextic Polynomial", roots, num_roots); return 0; }